• Title/Summary/Keyword: 준선형화

Search Result 36, Processing Time 0.029 seconds

Control of Servo System Using Backstepping (Backstepping 기법을 이용한 서보시스템의 제어)

  • Yun, Ki-Young;Ji, Suk-Jun;Choi, Woo-Jin;Lee, Joon-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2224-2226
    • /
    • 2003
  • 서보시스템은 공작 기계, 자동화기계용 등의 제어에 사용되고 있는 대표적인 제어 시스템으로서 관성 디스크를 교환하기도 하며 전자가변 포화도와 히스테리시스등을 사용하여 고정밀 연구용에도 이용가능하다. 그러나 모델의 불확실성이나 외부외란이 필연적으로 존재할 수 밖에 없으므로 이를 분석하고 규명하여 원하는 목적의 제어를 위한 제어기를 설계해야만 할 것이다. 따라서, 본 연구에서는 제어대상 시스템의 불화실성을 극복할 수 있고 비선형항의 소거를 통한 선형화가 아닌 비선형 제어기의 설계를 가능하게 하는 Backstepping 제어기법을 사용하여 서보시스템의 정밀한 제어와 시스템 안정성을 보장하고자 한다. Backstepping 제어기를 설계하여 다양한 조건하에서의 시뮬레이션을 수행하여 제안하는 제어기의 최적 수행 능력을 보이고자 한다.

  • PDF

Development of Controller for EMS System using Nonlinear Feedback Linearization, regarding Uncertainty of System (시스템의 불확실성을 고려한 자기부상 시스템의 비선형 궤환 선형화 제어기)

  • Byun, Ji-Joon;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.345-347
    • /
    • 1993
  • It is known that Feedback linearization has important limitations-the full state has to be measured; no robustness is guaranteed with respect to parameter uncertainty and unmodeled dynamics. In this paper, we construct a nonlinear feedback linearization controller for the system containing uncertain parameters and unknown states, in the case of EMS system with rail vibration. Performance of this controller is demonstrated by computer simulation.

  • PDF

Implementation of DSP Controller for Levitation of EMS System using Nonlinear Feedback Linearization (비선형 궤환 선형화 기법을 사용한 자기부상 시스템의 DSP 제어기 구현)

  • Shim, Hyung-Bo;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.268-270
    • /
    • 1993
  • The implementation of Nonlinear Feedback Linearization control for Electro-Magnetic Suspension system is presented. The controller using TMS320C31 DSP chip was proposed and the experiments were performed Control law for EMS system using feedback linearization is derived and implemented in the DSP. Some tests were constructed far experimental comparison between feedback linearization and classical state feedback The experimental results demonstrate that the feedback linearization controller shows bettor performance than that of the classical state feedback controller and it is robust with respect to disturbance and parameter variation, though some steady-state errors appear.

  • PDF

Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method (추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계)

  • Ok, Seung-Yong;Song, Jun-Ho;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2007
  • Optimal design method of nonlinear damping system for seismic response control of adjacent structures is studied in this paper. The objective functions of the optimal design are defined by structural response and total amount of the dampers. In order to obtain a solution minimizing two mutually conflicting objective functions simultaneously, multi-objective optimization technique based on genetic algorithm is adopted. In addition, stochastic linearization method is embedded into the multi-objective framework to efficiently estimate the seismic responses of the adjacent structures interconnected by nonlinear hysteretic dampers without performing nonlinear time-history analyses. As a numerical example to demonstrate the effectiveness of the proposed technique, 20-story and 10-story buildings are considered and MR dampers of which hysteretic behaviors vary with the magnitude of the input voltage are considered as nonlinear hysteretic damper interconnecting two adjacent buildings. The proposed approach can provide the optimal number and capacities of the MR dampers, which turned out to be more economical than the uniform distribution system while maintaining similar control performance. The proposed damper system is verified to show more stable performance in terms of the pounding probability between two adjacent buildings. The applicability of the proposed method to the design problem for optimally placing semi-active control system is examined as well.

Iterative Series Methods in 3-D EM Modeling (급수 전개법에 의한 3차원 전자탐사 모델링)

  • Cho In-Ky;Yong Hwan-Ho;Ahn Hee-Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.70-79
    • /
    • 2001
  • The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.

  • PDF

Linear Interrogation of Distributed Fiber Grating Temperature Sensor Network using a Fabry-Perot ITU Filter (Fabry-Perot ITU 필터의 기준파장을 이용한 분배형 광섬유 격자 온도센서의 선형복조)

  • Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.54-60
    • /
    • 2007
  • We constructed a fiber-optic temperature sensor system using a sensor array with 15 fiber Bragg gratings for distributed temperature monitoring in electrical power systems. A polynomial fitting algorithm was used to compensate the nonlinear action of the MEMS tuneable wavelength filter used for Bragg wavelength demodulation Fixed passband wavelengths from a Fabry-Perot ITU filter were used as reference wavelengths for the fitting algorithm which obtained constant accuracy regardless of the wavelength scanning range and frequency. About 0.18[%] of linearity error compared to reference thermocouple thermometer has been obtained in the preliminary experimental results.

Quadratic Newton-Raphson Method for DC and Transient Analyses of Electronic Circuits (電子回路의 DC 및 過渡解析을 위한 2次 Newton-Raphson 方法)

  • Jun, Young-Hyun;Lee, Ki-Jun;Park, Song-Bai
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.122-128
    • /
    • 1989
  • In this paper we propose a new method for solving a set of nonlinear algebraic equations encountered in the DC and transient analyses of electronic circuits. This method will be called Quadratic Newton-Raphson Method (QNRM), since it is based on the Newton-Raphson Method (NRM) but effectively takes into accoujnt the second order derivative terms in the Taylor series expansion of the nonlinear algebraic equations. The second order terms are approximated by linear terms using a carefully estimated solution at each iteration. Preliminary simulation results show that the QNRM saves the overall computational time significantly in the DC and transient analysis, compared with the conventional NRM.

  • PDF

T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time (이산시간에서의 장주기모델에 관한 다개체시스템의 T-S 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae;Kim, Moon Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • This paper addresses a formation control problem for a phugoid model-based multi-agent system in discrete time by using a Takagi-Sugeno (T-S) fuzzy model-based controller design technique. The concerned discrete-time model is obtained by Euler's method. A T-S fuzzy model is constructed through a feedback linearization. A fuzzy controller is then designed to stabilize the T-S fuzzy model. Design condition is presented in the linear matrix inequality format.

Polarimetric Fiber-optic Current Transformer using a Spun Fiber (스펀 광섬유를 이용한 편광 분석형 광섬유 전류센서)

  • Park, Hyong-Jun;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • A polarimetric fiber-optic CT has been developed by using a sensing coil made of a length of sun fiber. A Faraday rotator mirror is attached to the end of the sensor coil to double the sensitivity and to suppress the residual linear birefringence effect. From the current measurements, the linear error no more than ${\pm}2[%]$ was obtained. The output of spun fiber sensor coil was compared with those of the twisted- and the flint glass fiber's, and it fumed out to almost 50 times, 2 times more sensitive, respectively.

MLE Based Power System Oscillation Detector by Using Measurement Data (최대 리아프노프 지수를 활용한 전력계통 측정 데이터 기반 비선형 동요 현상 검출 방안)

  • Cho, Hwanhee;Lee, Byongjun;Nam, Suchul;Kim, Yonghak
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2018
  • 본 연구는 시각 동기 위상 측정 정보를 이용하여 전력계통에 나타나는 여러 가지 동요 현상을 검출하기 위한 기초 연구로써, 시계열 데이터 분석 분야로 분류된다. 제시한 방법은 비선형 동특성에 해석 기반으로 접근하여 전력계통에 나타날 수 있는 여러 동요 현상을 범용적으로 검출해 낼 수 있다. 비선형 동요 현상의 신호적 패턴을 수학적으로 기본 순시치 파형으로부터 피크치 샘플링을 통해 전개하여 계통 요소간 간섭으로 인한 원하지 않는 진동 모드를 검출하고자 한다. 계통의 변화로 진동 모드가 나타날 때, 2차원 평면에 실효치로 환산한 시계열 전압 데이터와 선형화된 플로퀘트 상수(Floquet multiplier)를 맵핑하여 도시하고, 정상상태 지점으로부터 거리를 계산하여 최대 리아프노프 지수 계산을 통해 계통이 불안정하게 되는 시간을 시계열 데이터 분석으로 추정하는 것이 본 방법의 핵심이다. 이러한 접근으로 제시한 비선형 동요 검출 알고리즘을 적용하여 디지털 필터 적용 또는 주파수 영역 해석과 같은 오프라인 Study와 달리 온라인으로 신속하게 계통의 현재 상태를 알 수 있게 된다.