• Title/Summary/Keyword: 준능동 제어장치

Search Result 19, Processing Time 0.028 seconds

Vibration Control and Cost-Effectiveness Evaluation of Cable-Stayed Bridges with Semi-Active Control System (준능동 제어시스템을 이용한 사장교의 진동제어 및 비용효율성 평가)

  • Hahm, Dae-Gi;Ok, Seung-Yong;Park, Wonsuk;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.43-54
    • /
    • 2005
  • This paper presents cost-effectiveness evaluation of semi-active control system for cable-stayed bridge under earthquake excitations with various magnitudes and frequency contents. Semi-active control system, which is operated by using Bi-stale control method on the basis of linear quadratic Gaussian (LQG) optimal controller, is designed for the benchmark control problem proposed by Dyke et at. The cost-effectiveness of the proposed control system is defined by the ratio of life-cycle costs between a bridge structure with shock transmission units and a bridge structure with the semi-active control devices. The simulated results show that the damper cost has little influence on the cost-effectiveness of the semi-active control system while the cost-effectiveness is quite sensitive to the damage cost induced by the bridge failure. It is also found that the semi-active control system guarantees relatively high cost-effectiveness for the cable-stayed bridge subject to the ground motions in the regions of moderate seismicity with soft soil condition and strong seismicity with stiff soil condition.

Multi-objective Optimal Design using Genetic Algorithm for Semi-active Fuzzy Control of Adjacent Buildings (인접건물의 준능동 퍼지제어를 위한 유전자알고리즘 기반 다목적 최적설계)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.219-224
    • /
    • 2016
  • The vibration control performance of a semi-active damper connected to adjacent buildings subjected to seismic loads was investigated. The MR damper was used as a semi-active control device. A fuzzy logic control algorithm was used for effective control of the adjacent buildings connected to the MR damper. In the buildings control coupled with a MR damper, the response reduction of one building results in an increase in the response in another building. Because of these conflict characteristics, multi-objective optimization is required. Therefore, a fuzzy logic control algorithm for the control of a MR damper was optimized using a multi-objective genetic algorithm. Based on numerical analyses, the semi-active fuzzy control of MR damper for adjacent coupled buildings can provide good control performance.

Controller Design of Hybrid Tuned Mass Damper (하이브리드 제진장치 콘트롤러 설계기술)

  • Joo, Seok-Jun;Lee, Sung-Kyung;Shin, Koon-Jae;Kwon, June-Yeop
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.392-395
    • /
    • 2010
  • 최소질량형 제진장치는 초고층건물의 풍진동 제어시 질량체의 관성력을 최대한 효율적으로 이용하여 이동질량의 크기를 최소화한 제진장치라 할 수 있다. 본 연구의 최종목표는 순수 국내기술에 의한 능동제어(active control)와 수동제어(passive control)의 특성이 결합된 하이브리드 제진장치(hybrid control device)의 콘트롤러 설계기술 개발이다. 이를 위한 1차적인 목표로 여기에서는 국내에 설치된 기존의 능동진동제어장치의 전체적인 설계과정을 살펴본다.

  • PDF

Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.;Lin, P.Y.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.61-70
    • /
    • 2005
  • Shaking table tests are carried out on a single-degree-of-freedom mass that is equipped with a hybrid base isolation system. The isolator consists of a set of four specially-designed friction pendulum systems (FPS) and a magnetorheological (MR) damper. The structure and its hybrid isolation system are subjected to various intensities of near- and far-fault earthquakes on a large shake table. The proposed fuzzy controller uses feedback from displacement or acceleration transducers attached to the structure to modulate resistance of the semi-active damper to motion. Results from several types of passive and semi-active control strategies are summarized and compared. The study shows that a combination of FPS isolators and an adjustable MR damper can effectively provide robust control of vibration for a large full-scale structure undergoing a wide variety of seismic loads.

Seismic Response Control of Adjacent Structures by Semi-Active Fuzzy Control of Magneto-Rheological Damper (MR 감쇠기의 준능동 퍼지제어기법을 이용한 인접구조물의 지진응답제어)

  • Kim, Min-Seob;Ok, Seung-Yong;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • In this paper, a method for reducing seismic responses of adjacent buildings is studied that involves connecting two buildings with energy-dissipating devices, such as MR dampers. For the vibration control of the adjacent buildings, a fuzzy control technique with semi-active MR dampers is proposed. A fuzzy controller, which can appropriately modulate the damping forces by controlling the input voltage in real time, is designed according to the proposed method. To verify the validity of the proposed method, numerical simulations are performed. In the numerical simulations, historical earthquake records with diverse frequency contents and different peak values are used. For the purpose of comparison, an uncontrolled system, a passive control system and a semi-active fuzzy control system are considered. The comparative results prove the effectiveness of the proposed control technique, i.e. the numerical results show that the fuzzy controlled semi-active MR dampers can effectively reduce the earthquake responses of the adjacent structures.

Use of Semi-active Tuned Mass Dampers for Vibration Control under Various Excitations (다양한 하중의 진동제어를 위한 준능동 TMD의 이용)

  • Kim, Hyun-Su;Kim, Seung-Jun;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.51-62
    • /
    • 2006
  • To dale, lots of types of tuned mass dampers are developed and investigated to reduce dynamic responses of a structure due to various causes. In this study, control performance of semi-active tuned mass damper(STMD), that can change the damping of tuned mass damper in real time based on structural responses, was investigated with respect to various types of excitation employing numerical simulation. Skyhook control algorithm was used to appropriately modulate the damping ratio of semi-active damper that composes STMD. The control effectiveness of a STMD under harmonic and random excitation were evaluated using a single-degree-of-freedom (SDOF) structure in comparison with a conventional passive tuned mass damper (TMD). The robustness of a STMD and a passive TMD were compared along with the variation of the mass of a SDOF structure. The control performance of STMD using magnetorheological (MR) damper was also investigated in this study. Based on the numerical studios, it was shown that the control effectiveness of the STMD was significantly superior to that of a passive TMD with respect to harmonic and random excitation.

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

Observer Kalman Filter Identification of a Three-story Structure installed with Active Mass Driver (OKID를 이용한 실험 건물모델의 시스템 식별 실험)

  • 주석준;이상현;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.161-169
    • /
    • 2004
  • This paper deals with system identification of a three-story building model with active mass damper (MID) for the controller design. Observer Kalman filter identification (OKID) technique is applied to find the relationship between the experimental results of the input and output. The inputs to the building model with MID are ground accelerations and motor command signal, which are, respectively, simulated earthquake and equivalent control force. The outputs are each floor acceleration and MID acceleration. The MID controller is designed based on the experimentally identified building system. Finally it is shown that experimental results agree accurately with simulated results.

Design of Rollover Prevention Controller Using Game-Theoretic Approach (미분게임 이론을 이용한 차량 전복 방지 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1429-1436
    • /
    • 2013
  • This study presents an approach for designing a vehicle rollover prevention controller using differential game theory and multi-level programming. The rollover prevention problem can be modeled as a non-cooperative zero-sum two-player differential game. A controller as an equilibrium solution of the differential game guarantees the worst-case performance against every possible steering input. To obtain an equilibrium solution to the differential game with a small amount of computational effort, a multi-level programming approach with a relaxation procedure is used. To cope with the loss of maneuverability caused by the active suspension, an electronic stability program (ESP) is adopted. Through simulations, the proposed method is shown to be effective in obtaining an equilibrium solution of the differential game.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF