• Title/Summary/Keyword: 주행형 이동 로봇

Search Result 92, Processing Time 0.035 seconds

개인용 탑승시스템 제어를 위한 스마트폰 인터페이스 설계

  • Kim, Yeon-Gyun;Kim, Dong-Heon
    • ICROS
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • 본 기술 특집호에서는 개인용 탑승시스템(PMS, Personal Mobility System) 혹은 이동로봇을 무선 원격 제어할 때 사용할 수 있는 인터페이스(지자기센서 기반형, 조그셔틀형)들을 소개하고, 사용자 편리성 제어 기반으로 인터페이스 방식을 분석한다. 지자기센서 기반의 절대방향 제어는 자기북극을 기준으로 한 지자기센서의 측정값인 방향각을 이용하여 스마트폰의 방향각에 탑승시스템의 방향각을 같도록 탑승시스템을 제어하는 것이다. 탑승시스템에 서있는 탑승자가 스마트폰을 이용하여 탑승시스템이 원하는 방향으로 이동하기 위하여 제어할 때에는 스마트폰의 화면에 표시되어진 시작 버튼에 손가락을 놓고, 원하는 방향으로 스마트폰을 좌 우로 회전시키면 탑승시스템은 그 방향으로 회전을 하며 주행한다. 터치기반의 조그셔틀 인터페이스를 이용하여 원하는 방향으로 이동하기 위해서는 탑승시스템에 서있는 사용자가 스마트폰의 화면에 표시되어진 조그셔틀 스위치에 손가락을 놓고, 원하는 방향대로 손가락을 움직이면 스마트폰은 블루투스 무선통신을 통하여 탑승시스템을 주행 할 수 있다.

Research of Colonoscope Robot With Rotary Inertia Type Locomotion Mechanism (회전관성형 주행 메커니즘을 가진 내시경 로봇의 연구)

  • Lee, Jaewoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.521-526
    • /
    • 2016
  • This paper suggests a new design that makes use of rotary inertia that can allow autonomous movement of an autonomous colonoscope robot in the colon of a patient as a locomotive mechanism. As commercial colonoscopy causes a lengthy time of pain and discomfort to the patients when colonoscopy patients are reluctant to receive surgery, there is a tendency to avoid the test in the early diagnosis of colorectal cancer. To solve this problem, research has been conducted on the next generation of robotic colonoscopes that can reduce the discomfort and pain by moving autonomously within the colon of the patients. In the driving mechanism utilizing the rotational inertia, a flywheel is driven by a motor to store energy and produce rotational inertia. By the energy stored and released by the flywheel, the stick phenomenon that occurs when the robot is running in the intestine can be overcome effectively. To do this, a controller that can control the velocity of the flywheel and is robust to high frequency noise was designed and implemented. The driving mechanism using the rotational inertia presented here showed that the structure is also effective and the experiment can be run easily compared to another mechanism.

A study on the autonomous mobile robot using wireless networks (무선통신망을 이용한 자율이동로봇에 관한연구)

  • Yoo, Min-Suck;Kim, Nam-Uook;Um, Tae-Min;Choi, Eun-Jin;Na, Yoo-Chung;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.131-132
    • /
    • 2011
  • 현 시대는 로봇의 시대라 할 만큼 다채로운 로봇들이 개발되고 있으며, 인간의 기능들을 본 떠 만든 로봇 암(Robot arm: manipulator)과 워킹로봇(Walking robot: biped robot, quadruped robot, popping robot, etc.)물체인식 및 물체 추적 로봇(Tracking robot with image processing -. Domo robot, MIT.)이나 곤충과 동물 등의 생체 로봇에 대한 개발 또한 진행하고 있다. 지능형 이동로봇에서 가장중요하고 기본이 되는 기술인 무선통신망을 이용한 통신 기술과 지표면을 걷는 워킹로봇이 아닌 개활지나 밀폐된 공간에서 주행이 자유롭고 속도 및 주변 반응에 대해서 즉시 반응할 수 있는 장점을 가져 개발이용이한 바퀴를 이용한 2축 이동로봇에 관하여 연구하였다. 본 연구는 무선통신망을 이용하여 인터넷이 되는 곧 이면 어디서든 원격제어를 통하여 이동로봇을 전진, 후진, 좌회전. 우회전 및 속도제어 위치제어를 할 수 있고 GPS로 로봇의 위치와, 카메라를 이용하여 영상자료를 수집하고 센서를 이용하여 장애물 감지 및 자율주행 하는 등 여러 분야에 응용 할 수 있는 로봇을 연구하였다.

  • PDF

A Necessary Condition for Climbing Capability of Wheel Drive Robotic Mechanisms (바퀴구동형 로봇 메카니즘의 등반능력을 위한 필요조건)

  • Kim, Byeong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.81-84
    • /
    • 2007
  • 바퀴구동형 로봇 메카니즘은 다양한 서비스 로봇에 활용되고 있는데, 이 로봇을 위하여 가장 기본적으로 요구되는 성능중의 하나는 등반능력과 관련된 구동모터의 사양을 결정하는 문제를 들 수 있다. 본 논문에서는 이러한 바퀴구동형 로봇 메카니즘의 등반능력을 고려하고, 경사면을 원활하게 주행하기 위한 필요조건을 제시하고자 한다. 결과적으로, 이러한 조건은 이동로봇 메카니즘의 설계에 유용하게 활용될 수 있을 것으로 기대한다.

  • PDF

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적을 통한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tak, Han-Ho;Lee, In-Yong;Lee, Jun-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.415-418
    • /
    • 2007
  • 가까운 미래에 인간생활에 활용될 지능형 로봇은 인간과 공존하면서도 효과적으로 인간을 도와줄 수 있는 인간친화형 로봇이라 할 수 있다. 이러한 것을 실현하기 위해서 로봇은 미지의 환경 내에서 자신의 위치 및 방향을 인식해야 할 필요가 있다. 더욱이, 이것은 일상생활에서 자연스럽게 이뤄지는 것이 당연하다. 로봇을 제어하는 가장 중요한 문제중의 하나로서 이동로봇의 주행에서의 위치불확실성을 해결함으로서 로봇의 위치를 추정하는 것이 바람직하다 할 수 있다. 본 논문에서는 실내외 공간에서 인간을 포한함 이동물체의 영상정보를 이용하여 이동로봇의 자기위치를 인식하기 위한 방법을 제시하고 있다. 제시한 방법은 로봇자체의 DR센서 정보와 카메라에서 얻은 영상정보로부터 로봇의 위치추정방법을 결합 한 것이다. 그리고 이동물체의 이전 위치정보와 관측 카메라의 모델을 사용하여 이동물체에 대한 영상프레임 좌표와 추정된 로봇위치 간의 관계를 표현할 수 있는 식을 제시하고 있다. 또한 이동하는 인간과 로봇의 위치와 방향을 추정하기 위한 제어방법을 제시하고 이동로봇의 위치를 추정하기위해서 칼만필터 방법을 적용하였다. 그리고 시뮬레이션 및 실험을 통하여 제시한 방법을 검증하였다.

  • PDF

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

A Layered Data Abstraction Software Architecture for Remote-Controlled Autonomous Mobile Robots (원격 조작되는 자율주행 이동로봇을 위한 계층별 데이터 추상화 소프트웨어 구조)

  • 이상문;박준화;강순주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.272-274
    • /
    • 2000
  • 본 논문에서는 자율 주행 로봇을 위한 계층화된 소프트웨어 구조 제안한다. 제안된 소프트웨어 구조에서는 데이터 종류를 추상화 단계에 따라 수치형 데이터, 명제형 데이터, 사실형 데이터로 분류했다. 그리고, 사용하는 데이터의 종류에 따라 계층을 분류해서, 실행 계층, 제어 계층, 추론 계층을 구성하고 각 계층의 기능을 정의했다. 또한 각 계층별 데이터 특성에 따른 고유의 데이터 처리 방법을 적용하였으며, 처리 결과에 대한 계층간 연동 구조에 대해서도 제안한다. 이러한 계층의 명확한 구분을 통하여 실시간 문제이면서도 복잡한 자료 처리 구조를 가지는 자율 주행 로봇의 소프트웨어 구조를 체계화하였고, 각 계층별 소프트웨어를 콤포넌화하여 재 사용성을 높이게 되었다.

  • PDF

Study on the Transformable Quadruped Robot with Docking Module (변형과 결합 가능한 4족 로봇에 대한 연구)

  • Kim, Young-Min;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 2015
  • This paper presents a study on transformable multiple quadruped robots by docking between robots and waist joints. This robot is able to go on a variety of angles because of mecanum wheels. It is also a hybrid design which allows robot use legs to overcome obstacles on complex terrains and wheels to move on flat ground. The robot is applied kinematics of mecanum wheels and walking, and its walking is based on specific patterns. Docking module is located in front and backside of robot, docking algorithm is suggested and fulfilled for docking between 2 robots. A waist joint is at the center of robot body for transformation and after docking and transformation, robot can activate new functions that carry something.

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Lee Dong-Wook;Sim Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.389-392
    • /
    • 2005
  • 어떤 미로환경 내에서 로봇이 스스로 목표물을 찾기 위해서는 탐색경로를 결정하는 알고리즘이 요구된다. 본 논문에서는 'Y'형 미로에서 목표물을 탐색하기 위하여 Dynamic Programming을 적용한 미로 탐색 알고리즘을 제안한다. 실험에서는 규격화된 미로 블록을 만들고, 먼저 기존에 연구 되었던 자수법 알고리즘을 자율이동 로봇에 적용해 'Y'형 미로 블록을 탐색하게 한다. 그리고 본 논문에서 제시한 Dynamic Programming을 이용한 미로탐색 알고리즘을 자율이동로봇에 적용하고 미로를 탐색한 후 이두가지 알고리즘을 적용한 로봇의 주행 결과를 각각 비교해 봄으로서 Dynamic Programming을 적용한 자율이동로봇의 미로탐색 방법의 성능을 확인한다.

  • PDF

A Design and Implementation of Educational Delivery Robots for Learning of Autonomous Driving

  • Hur, Hwa-La;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.107-114
    • /
    • 2022
  • In this paper, proposes a delivery robot that can be autonomous driving learning. The proposed robot is designed to be used in park-type apartments without ground parking facilities. Compared to the existing apartments with complex ground and underground routes, park-type apartments have a standardized movement path, allowing the robot to run stably, making it suitable for students' initial education environment. The delivery robot is configured to enable delivery of parcels through machine learning technology for route learning and autonomous driving using cameras and LiDAR sensors. In addition, the control MCU was designed by separating it into three parts to enable learning by level, and it was confirmed that it can be used as a delivery robot for learning through operation tests such as autonomous driving and obstacle recognition. In the future, we plan to develop it into an educational delivery robot for various delivery services by linking with the precision indoor location information recognition technology and the public technology platform of the apartment.