• Title/Summary/Keyword: 주행강성

Search Result 114, Processing Time 0.027 seconds

Identification of System Frequency Variations in Vehicle-Bridge Interaction Systems (교량-차량 동적상호작용을 고려한 시간가변적 시스템 특성 분석)

  • Lee, Jaehun;Lee, Young Jae;Kim, Robin Eunju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • Natural frequency variations in a vehicle-bridge interaction system is examined. The interaction system is designed for a simple beam subject to a moving vehicle. The equation of motion for the system is derived under the quarter-car condition, and numerical simulation is performed. Frequency amplification ratio (FAR) is defined as a ratio between the initial and the varying natural frequency of the system; a discontinuity in the FAR implies a resonance condition. Analysis is mainly focused on patterns, frequency variation characteristics, and discontinuity points of the FAR under the vehicle mass and tire stiffness variations. The result reveals that the interactions between the system affects the natural frequency of both the vehicle and the bridge in similar frequency regions that can be visually identified at the middle of the span using the FAR.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula (지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구)

  • Kim So-Gu;Bae Hyung-Sub
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.111-128
    • /
    • 2006
  • Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.

A study on the Vibration Reduction of the Commercial High-speed Train (운영 중인 고속열차의 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Choi, Sunghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.697-704
    • /
    • 2017
  • This study was carried out to investigate and alleviate the vibration problem of commercial high-speed trains. First, the measurement of the carbody vibration was performed, in order to determine the vibration level of the high-speed train. The measurement result showed that the vibration level of the driver cab was higher than that of the passenger car and that the vibration became bigger toward the trailing end of the train. The vertical vibration of the driver cab and passenger car was larger than the transverse vibration, and the maximum value of the vibration in the ballast section was larger than that in the concrete section. A dynamic analysis was carried out to improve the vibration of the KTX-Sancheon train. The results of the analysis showed that it is necessary to reduce the vibration of the driver cab and both ends of the passenger cars. To reduce the vibration of the driver cab, it was recommended that the stiffness of the secondary coil spring be reduced and the damping coefficient of the secondary vertical damper be increased. It was found that the failure of the suspension system could be the origin of the vibration problem of the high-speed train. The proper management of wheel wear plays an important role in the improvement of the operation efficiency and reduction of the carbody vibration of high-speed trains, and research is underway to change the present wheel profile to increase the mileage between wheel turning.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

Automotive Active Suspension Design using LQG/LTR method (LQG/LTR 설계방법을 이용한 자동차 현가장치 능동제어)

  • 박봉철;황재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.86-92
    • /
    • 1993
  • 자동차의 현가장치에 대한 능동제어연구는 국내외적으로 활발히 진행되어 왔다. 수동식현가장치는 단순히 스프링과 감쇠기로 차체의 진동을 수동 제어 하므로 성능 향상에 한계가 존재하게 된다. 수동식 현가장치가 강성계수와 감쇠계수를 조절함으로써 차체로 들어오는 진동을 억제하는 반면, 능동식제 어는 보통 유압을 이용하여 효율적으로 차체에 들어오는 진동을 억제시키게 된다. 일반적으로 자동차가 능동현가장치 설계시 요구되는 사항은 탑승자의 승차감, 조종성, 현가장치의 공간확보 문제, 경제성(제어력), 실제적으로 자동 차에 적용할 수 있는 능동제어기법인가 하는 문제이다. 자동차 능동식 현가 장치는 보통 1/4 car (2자유도계), Full-car 모델 (7자유도계) 등으로 모델링 을 하여 능동제어기를 설계한다. 1/4 car 모델의 특징은 해석이 비교적 단순 하고 현가장치의 동적거동을 이해하는데 유용하고 실험을 하거나 실제 자동 차에 적용하기 쉬운 반면에 Full-car 모델에 비해 제어력의 효율이 떨어진다 는 단점이 있다. 그 이유는 1/4 car 모델은 차체의 동역학적 특성을 고려하 여 설계하지 않았기 때문에 4개의 독립현가차축에서는 오직 그 현가축방향 으로 발생하는 수직방향의 진동만을 제어하기 때문이다. 따라서 동역학적 역 성에 기인하는 운동을 제어하는 비효율적인 제어력이 공급된다는 단점을 갖 는다. 이에 비해 full-car 모델은 주행모드(수직, 롤링, 피칭운동)간의 연성을 고려하여 제어기를 설계할 수 있기 때문에 1/4 car 모델에 비해 제어력의 효 율이 높다는 장점이 있는 반면에 모델이 수학적으로 복잡하므로 제어력을 구하는데 계산량이 많고, 실제 자동차에 적용하기에 복잡하다는 단점을 갖고 있다. 따라서 본 논문에서는 쉽게 실험할 수 있고, 실용화할 수 있는 1/4 car 모델에 대하여 능동제어기를 설계하여 실제자동차에 능동제어기를 적용할 때 참고가 될 수 있도록 하였다. 자동차는 저주파영역의 밴드통과필터 역할 을 하므로 저주파에서의 성능, 특히 탑승자가 민감하게 느끼는 0.5Hz - 10Hz 부근의 주파수성능은 승차감, 조종성에 상당히 중요하다. 이에 본 논문 에서는 0.5Hz - 10Hz 부근의 승차감, 조종성의 향상에 초점을 두고 차체의 속도를 출력변수로 한 LQG/LTR 제어기를 설계하였다. LQG/LTR 설계기법 은 안정도-강인성이 좋은 체계적인 설계기법으로서 전 상태를 측정할 필요 가 없으므로 실제 적용시 효과적이다. 또한 자동차의 제원의 변화에 대한 고 유치의 민감도해석과 새로운 개념으로 안정도-강인성(Robustness)해석을 하 여 수동시스템과 능동시스템의 강인성을 비교하였다.

  • PDF

A Study on the Fuel Quality Characteristics and Cold Weather Performance Test for Biodiesel Derived from Microalgae (미세조류 유래 바이오디젤 품질 특성 및 차량 저온 성능평가 연구)

  • JEON, CHEOL-HWAN;PARK, CHEON-KYU;LIM, JAE-HYUK;RYU, YOUNG-JIN;YANG, JI-HYUN;SHIM, SANG-HYEOK;CHO, YONG-HEE;KIM, KI-HYUN;PARK, HANWOOL;KIM, JUN-HO;PARK, JAEHOON;JUNG, INJAE;KANG, SUNG-MO;SHIN, DONG-WOO;LIM, SANG-MIN;LEE, CHOUL-GYUN;NA, BYUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • Microalgae can offer an attractive way of generating renewable and sustainable biodiesel. Biodiesel derived from microagae can have lower impact on the environment and food supply than biodiesel produced from crops. But biodiesel derived from microagae have poor fuel properties at low temperature depending on their species. In this study, it was investigated that fuel characteristics of biodiesel derived from Tetraselmis sp. and cold weather performance of biodiesel blend (BD3, 3 vol.% biodiesel - 97 vol.% diesel). The startability and operability of the passenger car in BD3 was good at $-20^{\circ}C$.

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

Analysis of Safety and Mobility of Expressway Land Control System (길어깨차로제 시행에 따른 안전성 및 이동성 분석)

  • Park, Sung-ho;Lee, Yoseph;Kang, Sungkwan;Cho, Hyonbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.1-19
    • /
    • 2021
  • The domastic hard shoulder running(HSR) System has been gradually expanding since its initial implementation in September 2007 with the aim of increasing capacity and resolving congestion. Hard Shoulder is used as a space for driver's visual comfort and a place for vehicles to evacuate in case of emergency, but it is replaced by a space for driving when the HSR System is implemented. Therefore, it was intended to determine the improvement effect before and after implementation of the HSR system through safety analysis and mobility analysis. The safety analysis analyzed the impact of traffic accidents by comparing HSR sections and similar sections. The mobility analysis was to determine the improvement effect by quantifying the speed and traffic volume changes before and after HSR System implementation. According to safety yanalysis, there is no effect of reducing traffic accidents when implementing the HSR System. In mobility analysis, the implementation of the HSR System significantly improved the speed of traffic during peak hours and significantly reduces slow and delay hours.