• Title/Summary/Keyword: 주파수 영역 설계

Search Result 602, Processing Time 0.031 seconds

Installation Design of FLIR Sensor Considering Dynamic Characteristics of Helicopter Airframe (헬리콥터 동적 특성을 고려한 FLIR 센서 장착 설계)

  • Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Forcing at the rotor blade passing frequencies is responsible for the majority of vibration related problems on helicopters. Blade passing frequencies of helicopters are generally in the range 10~30 Hz and the interest modes of the helicopters also exist in the range. By the way, the installation of a heavy sensor at the front extremities of an imported helicopter may change the modal characteristics of the airframe and results in the resonance with rotor passing frequencies. To avoid too large a change in the dynamics of the overall airframe, we determined how to install a heavy sensor through conceptual approach and finite element analysis. The results of a ground vibration test for airframe with sensor mount system clearly demonstrate that the installation design is acceptable dynamically.

Design of the Frequency Selective Surface with Transformation of Linear-to-circular Polarization (원편파 변환 주파수 선택 반사기 설계)

  • Ko, Ji-Whan;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The new periodic array structure or frequency selective surface with polarizers characteristic is proposed. The present structure is constructed with two sheets or FSS material, spaced about one-eight wavelength apart, the dipole element orientations of the two sheets being almost perpendicular to each other. The methods of the spectral domain immittance and MoM are used to analyze electromagnetic scattering from this periodic array structure. To confirm the validity of the polrizer's functions or the new periodic array structure, frequency selective surfaces are fabricated, calculated values for the frequency response of the reflection and transmission loss are compared with measured values. Good correspondence has been observed between them. Good axial ratio has been also observed to be achieved in the proposed structure.

  • PDF

The Study on Advanced Frequency Up Converter (개선된 주파수 상향 변환기에 관한 연구)

  • Lee, Seung-Dae;Shin, Hyun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3079-3085
    • /
    • 2014
  • This paper suggests a power level controllable frequency up-converter which is designed and fabricated using both the filtering technology consisted with only passive devices and a multi-level digital attenuator. The suggested frequency up-converter simultaneously realizes the low power consumption and the low cost model. Because of the possibility for controlling power levels, it is possible to use the suggested frequency up-converter for wide spectral range. According to the experimental results, the average gain value of 0.75dB is obtained for the bandwidth of 160MHz at the center frequency of 1,200MHz. Especially, it is confirmed that the power level can be controlled from 10 to -21.5dBm through the digital attenuator.

A Design of Wide-Range Digitally Controlled Oscillator with an Active Inductor (능동 인덕터를 이용한 광대역 디지털 제어 발진기의 설계)

  • Pu, Young-Gun;Park, An-Soo;Park, Hyung-Gu;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a wide tuning range, fine-resolution DCO (Digitally Controlled Oscillator) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. To cover the wide tuning range, an automatic three-step coarse tuning scheme is proposed. The DCO total frequency tuning range is 1.4 GHz (2.1 GHz to 3.5 GHz), it is 58 % at 2.4 GHz. An effective frequency resolution is 0.14 kHz/LSB. The proposed DCO is implemented in 0.13 ${\mu}m$ CMOS process. The total power consumption is 6.6 mW from a 1.2 V supply voltage. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Analysis and Design of Branch Line Coupler using Microstrip Lines with Overlay (덮개층이 있는 마이크로스트립 선로를 이용한 브랜치 선로 결합기 해석 및 설계)

  • 이승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.795-801
    • /
    • 2001
  • A method of miniaturizing branch line coupler is presented. The method utilizes the microstrip line with overlay(or superstrate). The frequency dependent characteristics, dispersion and characteristic impedance, of this line are obtained by Immitance method in spectral domain and Method of Line. The relevant spectral domain Green's function is given and used to obtain numerical results. The branch line couplers with overlays are designed and fabricated at 2 GHz. The experimental results show that the size of coupler with overlay(${epsilon}_r$=10.2) is 31.4 precent smaller than conventional coupler. This minimized coupler is suitable for Butler Matrix as feeder for mobile communication beam forming antenna.

  • PDF

A Hardware Design of High Performance HEVC Multi-mode Transform (다중 모드를 지원하는 고성능 HEVC 변환 블록의 하드웨어 설계)

  • Kim, Ki-Hyun;Shin, Seung-Yong;Ryoo, Kwang-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1532-1535
    • /
    • 2013
  • 변환 블록은 영상 압축에서 데이터를 공간적 영역에서 주파수 영역으로 변환해줌으로써 압축의 효율성을 높이는 역할을 수행한다. 본 논문에서는 고성능 HEVC를 위한 4개의 TU 모드($4{\times}4$, $8{\times}8$, $16{\times}16$, $32{\times}32$)를 지원하는 변환 블록 하드웨어 구조를 제안한다. 제안하는 변환 블록의 하드웨어 구조는 공통 연산기를 사용하여 각 TU 모드에 맞는 행렬 계수들 간의 연산을 수행한다. 또한 병렬적인 구조로 설계하여 $4{\times}4$, $8{\times}8$, $16{\times}16$, $32{\times}32$ 크기 TU 모드의 행렬 연산을 처리하는 사이클수가 35cycle로 동일하게 처리된다. TSMC 180nm CMOS 공정 라이브러리를 통해 합성한 결과 $4k(3840{\times}2160)@30Hz$의 영상을 기준으로 최대 동작주파수는 400MHz이고 총 게이트 수는 159k이며, 10-Gpels/cycle의 처리량을 갖는다.

An Application of LTR Method in a DUOX System to Control a MDOF Structure Subjected to the Seismic Excitations (루프전달회복법(Loop Transfer Recovery: LTR)을 이용한 다자유도 DUOX 시스템의 지진동 제어)

  • Lee, Jin-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.65-73
    • /
    • 2008
  • Retaining large stability margin is essential in designing a feedback control system to deal with the uncertainties inherently existing in the mathematical model and the control apparatus. The LQG controller in general loses the stability margin due to the embed Kalman filter. The performance of a control system called LTR with a DUOX structure(LTR/DOUX) to overcome the demerit of LQG controller is to be investigated from the responses in both the time and the frequency domain. The results indicated that the LTR/DOUX recovered the gain margin of 30dB approximately 20 times more than that of LQG/DOUX, resulting in a robust stable control system.

Tokamak 플라즈마에서 ICRF 출력전달과 반사계 설계

  • An, Chan-Yong;Wang, Seon-Jeong;Kim, Seon-Ho;Kim, Seong-Gyu;Kim, Chang-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.218-218
    • /
    • 2011
  • Tokamak 플라즈마는 ICRF 영역에서 외곽 플라즈마 부근에 CUT-OFF밀도가 있으며, 이보다 낮은 밀도에서는 ICRF 전파가 투과하지 못하는 전파 장벽이 존재하게 된다. 이때 전달되는 효율은 안테나 부하저항으로 알 수 있으며, 이는 전파장벽이 낮을수록 큰 값을 갖는다. 따라서, 전파장벽은 에너지 전달 효율을 급격히 떨어뜨리므로 전파 장벽의 특성을 분석하고 이를 낮추는게 매우 중요하다. CUT-OFF 밀도는 자기장, k_par, 구동주파수, 플라즈마 밀도에 의존하게 되고, 측정한 밀도 분포를 통해 전파장벽의 구간을 안다면,이를 이용하여 안테나의 부하저항과의 의존성을 알 수 있다. 본 연구에서는 이러한 외곽 플라즈마 밀도 분포를 얻기 위해 토카막의 언저리 영역에서 플라즈마에 간섭없이 $10^{18}{\sim}10^{19}m^{-3}$의 플라즈마 밀도를 진단할 수 있는 9GHz~30GHz의 microwave를 사용하는 반사계를 설계하였으며,플라즈마 변수와 ICRF 운전 변수에 따른 부하저항의 계산결과와 반사계 시스템 설계에 대한 내용이 발표될 것이다.

  • PDF

Design and Analysis of Gap Coupled Microstrip Patch Antenna using the FDTD method (유한차분 시간영역법을 이용한 갭 결합 마이크로 스트립 패치안테나의 설계 및 해석)

  • Shin, Ho-Sub
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.389-393
    • /
    • 2009
  • In this paper, the single patch microstrip antenna and gap coupled broadband microstrip patch antenna using FDTD(Finite Difference Time Domain method) are analyzed. Mur's 2nd absorbing boundary condition to minimize reflected wave is applied. Return loss, voltage standing wave ratio, and input impedance by the length and width of driving patch, the length and width of parasitic patch, and the distance between driving patch and parasitic patch have been analyzed. Design parameters and radiation patterns of broadband antenna have been also shown.

  • PDF