• Title/Summary/Keyword: 주파수 분포

Search Result 909, Processing Time 0.028 seconds

A Self Organization of Wavelet Network Structure by Generation and Extinction of Hidden Nodes (은닉노드의 생성 ${\cdot}$ 소멸에 의한 웨이블릿 신경망 구조의 자기 조직화)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.78-89
    • /
    • 1999
  • Previous wavelet network structures are determined by considering the relationship between wavelet windows distribution of training patterns that are transformed into time-frequency space. Because it is separated two algorithms that determines wavelet network structure and that modifies parameters of network, learning process that minimizes output error of network is executed after the network structure is determined. But this method has some weakness that training patterns must be transformed into time-frequency space by additional preprocessing and the network structure should be fixed during learning process. In this paper, we propose a new constructing method for wavelet network structure by using differences between the output and the desired response without preprocessing. Because the algorithm perform network construction and error minimizing process simultaneously, it can determine the number of hidden nodes adaptively as with the complexity of problems. In addition, the network structure is optimized by inserting new hidden nodes in the area that has maximum error and extracting hidden nodes that has no effect to the output of network. This algorithm has no constraint condition that all training patterns must be known, because it removes preprocessing procedure for training patterns and it can be applied effectively to systems that has time varying outputs.

  • PDF

Recent Perspectives on Oncoplastic Breast Surgery in Korea (우리나라의 종양성형학적 유방암 수술에 대한 최신 동향)

  • Kang, Taewoo
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.563-569
    • /
    • 2020
  • Oncoplastic surgery (OPS) combines oncologically safe tumor resection with aesthetically satisfying reconstruction of defects using established plastic surgery techniques. OPS is characterized by initial excision as extensive as is beneficial for oncological safety, and, once sufficient resection is complete, displacement or replacement techniques are selected based on remnant volume. The size of the lesion and the individual patient are important factors when considering the appropriate approach, and when pre-operative imaging, including MRI, is used to determine the technique, the complete removal of cancer cells by permanent pathology is essential. A frozen section is used during the operation to reduce the reoperation rate, but it is difficult to cover the entire margin surface theoretically and even harder in practice. A recent report about adequate margins has empowered OPS in its oncological safety. Considering the patients to whom each modality could be applied, basic breast volume is an important factor, and this is influenced by ethnic differences. In Europe or the US, for example, the average breast size is 36D (600 ㎤) and reduction mammoplasty is predominantly used. However, the average size of patients in our institution is 33A (300 ㎤), and so quite different approaches are selected in most cases. New techniques involving radiofrequency and fluorescence have been proposed as safe and easily accessible ways of reducing complications.

Numerical Study on Cavitation Flow and Noise in the Flow Around a Clark-Y Hydrofoil (Clark-Y 수중익형 주변 공동 현상에 의한 유동장과 소음 예측에 대한 수치적 연구)

  • Ku, Garam;Cheong, Cheolung;Kim, Sanghyeon;Ha, Cong-Tu;Park, Warn-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Because the cavitation flow driven by an underwater propeller corrodes the materials around it and generates a high level of noise, it has become an important topic in engineering research. In this study, computational fluid dynamics techniques are applied to simulate cavitation flow, and the noise in the flow is predicted by applying the acoustic analogy to the predicted flow. The predicted results are compared with measurement results and other predictions in terms of surface pressure distribution and the temporal variation in liquid volume fraction. The predicted results are found to be in good agreement with the measured results. The source of the noise attributed to the time rate of change in the liquid volume fraction around the hydrofoil is modeled as a monopole source, and the source of the noise due to unsteady pressure perturbations on the hydrofoil surface is modeled as a dipole source. Then the predicted noise results are analyzed in terms of directivity and SPL spectrum. The noise caused by unsteady pressure perturbations was dominant in the entire frequency range considered in the study.

Evaluation of phase velocity in model rock mass using wavelet transform of surface wave (표면파에 대한 웨이블렛 변환을 이용한 모형 암반의 위상속도 예측)

  • Lee, Jong-Sub;Ohm, Hyon-Sohk;Kim, Dong-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Prediction of ground condition ahead of tunnel face might be the most important factor to prevent collapse during tunnel excavation. In this study, a non-destructive method to evaluate the phase velocity in model rock mass using wavelet transform of surface wave was proposed aiming at ground condition assessment ahead of tunnel face. Model tests using gypsum as a rocklike material composed of two layers were performed. A Piezoelectric actuator with frequencies ranging from 150 Hz to 5 kHz was selected as a harmonic source. The acceleration history was measured with two accelerometers. Wavelet transform analysis was used to obtain the dispersion curves from the measured data. The experimental results showed that the near-field effects can be neglected if the distance between two receivers is chosen to be three times the wavelength. A simple inversion method using weighted factor based on the normal distribution was proposed. The inversion results showed that the predicted phase velocity agreed reasonably well with the measured one when the wavelength influence factor was 0.2. The depth of propagation of surface wave was from 0.42 to 0.63 times the wavelength. The range of wavelength varying with phase velocity in dispersion curve matched well with that estimated by inversion technique.

  • PDF

Performance of a Hybrid DS/SFH Spread Spectrum System over Nakagami Fading Channel in the Presence of Multiple Tone Jamming (다중 톤 방해신호가 존재하는 나카가미 페이딩 전송로에서 DS/SFH 복합 확산대역 시스템의 성능분석)

  • Byun, Woo-Sub;Sung, Koeng-Mo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.8-16
    • /
    • 1999
  • In this paper, the performance of a hybrid DS/SFH-SS(direct-sequence/slow-frequency-hopped spread-spectrum) system with coherent BPSK modulation over Nakagami fading channel in the presence of multiple tone jamming is analyzed. Because the Nakagami m-distribution can describe not only Rayleigh fading but also more general fluctuations involving a specular component by adjusting the value of the fading index m. It is known that for m=1 corresponds to Rayleigh fading, for $1/2{\le}m{\le}1$ corresponds to the worst case fading condition, for m>1 corresponds to Rician fading, and for $m{\to}{\infty}$ corresponds to the nonfading condition. The bit error probability is derived over Nakagami model and numerical evaluations are presented for some combinations of system parameters. The results show that as m increases, the bit error probability is better. Also, at a low JSR(jamming-to-signal power ratio), a pure DS-SS system can achieve lower bit error probability than a hybrid DS/SFH-SS system. But at a high JSR, a hybrid DS/SFH-SS system is shown to be superior to a pure DS-SS system. Therefore, it is demonstrated that without increasing the total system bandwidth, the performance of a hybrid DS/SFH-SS is superior to that of a pure DS-SS system in the presence of multiple tone jamming.

  • PDF

Multi-Channel Analog Front-End for Auditory Nerve Signal Detection (청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드)

  • Cheon, Ji-Min;Lim, Seung-Hyun;Lee, Dong-Myung;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.60-68
    • /
    • 2010
  • In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Analysis of Nonlinear Characteristics in the Frequency Hopping Multiple Access(FHMA) Communication System (주파수 도약 다중 사용자 통신 시스템의 비선형 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.319-325
    • /
    • 2004
  • FHMA(frequency hopping multiple access) communication system has good performance for the LPI and AJ(low probability of intercept and anti-jamming) application. However, high PAPR(peak to average power ratio) happens in the base-station or the repeater system because of a large number of users. In general, predistorter is used to complete the HPA(high power amplifier) nonlinear characteristics. This paper analyzes BER performance when magnitude of IBO(input back oft) and the number of user are considered as the system parameters. In case of the SSPA(solid state power amplifier), the predistorter does not always work as a complete nonlinear compensator. We find that there is a minimum value of IBO for the predistorter to compensate for the nonlinear SSP A, which is changed as the number of user. If IBO is lower than 6 ㏈ at the user number of 16 and p=1, the system with predistorter is poorer than the one without predistorter. Only when the IBO is over 6 ㏈, predistorter does work as a nonlinear compensator. We call it as cross-over IBO value. TWTA improves the more compensation performance than SSPA because characteristic AM/AM of TWTA has more nonlinear than SSPA. At the BER=10$\^$-3/, there are SNR power gains of about 2.5 ㏈ and 3 ㏈ due to the predistorter when the numbers of users are 16 and 32, respectively.

Prediction of Noise Power Disturbance from Antenna to Transmission Line System (안테나로부터 인접 전송선로에 전달되는 노이즈 전력 예측)

  • Ryu, Soojung;Jeon, Jiwoon;Kim, Kwangho;Jo, Jeongmin;Lee, Seungbae;Kim, SoYoung;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1172-1182
    • /
    • 2014
  • In these days, many kinds of goods are more light and more integrated. As frequency range of mobile applications have increased to improve performance of antenna furthermore, EMI(ElectroMagnetic Interference) problem has frequently caused by disturbance of antenna in device which aggravates other circuit. This paper proposes a technique for the prediction of noise power to the transmission line from antenna located near the line. Although noise power transferred to transmission line is varied by source impedance of antenna and load impedance of transmission line basically, the power magnitude can be presented in a square form of S-parameter between antenna and transmission line due to small variation of transferred power. For this reason, we can use the index expressed the transferred power varied along geometrical shapes of transmission line. As a result, big difference is occurred along location of antenna especially the bended line. And this such experiment is correspond with simulation, these results have meaning physically considering electromagnetic field distribution in near and far field. HFSS of Ansys and CPW with ground is used in this paper.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Comparison of Digital Filters with Wavelet Multiresolution Filter for Electrogastrogram (위전도 신호처리를 위한 웨이브렌 필터와 디지털 필터의 비교)

  • 유창용;남기창;김수찬;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2002
  • Electrogastrography(EGG) is a noninvasive method for measuring gastric electrical activity on the abdomen resulting from gastric muscle. EGG signals have a very low frequency range (0.0083 ~0.15 Hz) and extremely low amplitude(10~100 uV). Consequently, EGG signal is easily influenced by other noises. Both finite impulse response(FIR) and infinite impulse response (IIR) filters need high orders or have phase distortions for passing very narrow bandwidth of the EGG signal. In this study, we decomposed EGG signals using a wavelet multiresolution method with Daubechies mother wavelet. The EGG signals were decomposed to seven levels. We reconstructed signal by summing the decomposed signals from level four to seven. To evaluate the performance of the wavelet multiresolution filter(WMF) with simulated EGG signal using two kinds of FIR and four kinds of IIR filters., we used two indices; signal to noise ratio(SNR) and reconstruction squared error(RSE). The SNR of WMF had 9.5, 6.9, and 4.7 dB bigger than that of the other filters at different noise levels, respectively. Also, The RSE of WMF had $1.22{\times}10^6, 1.16{\times}10^6, 1.02{\times}10^6$ smaller than that of the other filters at different noise levels, respectively. The WMF performed better in the SNR and RSE than two kinds of FIR and four kinds of IIR filters.