• Title/Summary/Keyword: 주파수의 온도 계수

Search Result 131, Processing Time 0.037 seconds

Determination of the Optimal Crystal Cut and Propagation Direction of a Piezoelectric Substrate for SAW Devices (탄성표면과 소자용 압전기판의 최적 절단명과 전파방향 결정)

  • Roh, Yong-Rae;Bae, Young-Ho;Chung, Dae-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.45-54
    • /
    • 1994
  • Characteristics of a piezoelectric material are evaluated to pick up the optimal crystal cut and propagation direction for a SAW device. For the piezoelectric single crystal $LiTaO_4$, such items are investigated as the Rayleigh wave velocity, the electromechanical coupling factor, the surface permittivity, the frequency-temperature coefficient, the air loading attenuation, the pure mode propagation, the beam steering and the misalignment sensitivity. Theoretical calculations reveal that Y-cut and Z-propagation is the optimal SAW propagation path. The results are confirmed through experiments. The method empolyed in this paper is applicable to other crystals, too, either single or poly crystals.

  • PDF

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures (In0.49Ga0.51P/GaAs 이종접합 구조의 표면 광전압 특성)

  • Kim, Jeong-Hwa;Kim, In-Soo;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.353-359
    • /
    • 2010
  • We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Microwave Dielectric Properties of CaTiO$_3$and CaTiO$_3$-TiO$_2$Ceramics (CaTiO$_3$및 CaTiO$_3$-TiO$_2$세라믹스의 마이크로파 유전특성)

  • 홍석경;윤중락;김경용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1102-1107
    • /
    • 1993
  • Microwave dielectric properties of CaTiO3 and CaTiO3-TiO2 ceramics for the composition range between 40 and 50 mol% CaO in CaO-TiO2 binary system were investigated. CaTiO3 ceramics with50 mol% CaO showed the dielectric constant (e,) of 178, the temperature coefficient of resonant frequency(c,) of+1000 ppm/'c and the qualify factor Q of 2760 (f0=2.7 GHz ). Dielectric constant and temperature coefficient of resonant frequency of ceramics with dual phases of CaTiO3 and TiO2 decreased gradually from those of CaTiO3 as the CaO content decreased. Q value and density were found to have minimum at the composition of 47 mol% CaO. The degradation of Q value and density in dual phase ceramics seems to be caused by the large pores at grain boundaries and/or within grains remained after rapid growth of CaTiO3 grains as TiO2 Phase decreased.

  • PDF

The microwave dielectric characteristics of $(Li_{1/2}Nd_{1/2})TiO_3$ ceramics by the addition of $TiO_2$ (과잉 $TiO_2$ 첨가에 의한 $(Li_{1/2}Nd_{1/2})TiO_3$ 세라믹스의 고주파 유전특성)

  • 박종목;이응상
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.301-308
    • /
    • 1997
  • The LNT ceramics which has the large negative temperature coefficient of resonant frequency ($\tau_1$) were manufactured by varying the $TiO_2$ contents. The effects of secondary phase $TiO_2$ which was caused by excess $TiO_2$ on the microstructure, phase transformations and microwave dielectric properties in ($Li_{1/2}Nd_{1/2}$)$TiO_3$ binary system were studied by X-ray and SEM. In case of adding up to 5 mol% $TiO_2$ on LNT, the liquid phase $TiO_2$which was created in the grain boundary of LNT not only increased the bulk density but also caused the nonhomogeneous structure of LNT which reduced the microwave dielectric characteristics. But the temperature coefficient of resonant frequency was improved by the 10 mol% addition of $TiO_2$.

  • PDF

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Estimation of Characteristics Change on Transverse Mode PZT Vibrator Under Space Environment (우주환경하에서 횡진동 모드 PZT진동자의 특성변화 예측)

  • Lee, Sang Hoon;Moon, Guee Won;Yoo, Seong Yeon;Kim, Jung Soon;Kim, Moo Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.514-522
    • /
    • 2012
  • The temperature dependence of the characteristics in a PZT-5 piezoelectric ceramic vibrator with the transverse mode was investigated in the range of $-100^{\circ}C$ to $90^{\circ}C$ using a thermal vacuum chamber to utilize the vibrator in aerospace industries. As the results, at room temperature, the resonant and anti-resonant frequencies had the minimum value, whereas, the dielectric constant increased linearly from about 2500 to 7500 in the given temperature range. The mechanical loss decreased linearly from 0.08 to 0.03. Through the regression analysis, the temperature dependence functions of the characteristics were derived to linear and square regression functions. Applying the functions, the input admittance characteristics of the piezoelectric vibrator were calculated, and the results showed good agreement with measured ones. It can be confirmed that this method is useful to estimate the characteristics change of the piezoelectric vibrator caused by the temperature change under the space environment.

Deformation Behavior of MEMS Gyroscope Package Subjected to Temperature Change (온도변화에 따른 MEMS 자이로스코프 패키지의 미소변형 측정)

  • Joo Jin-Won;Choi Yong-seo;Choa Sung-Hoon;Kim Jong-Seok;Jeong Byung-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.13-22
    • /
    • 2004
  • In MEMS devices, packaging induced stress or stress induced structure deformation become increasing concerns since it directly affects the performance of the device. In this paper, deformation behavior of MEMS gyroscope package subjected to temperature change is investigated using high-sensitivity moire interferometry. Using the real-time moire setup, fringe patterns are recorded and analyzed at several temperatures. Temperature dependent analyses of warpages and extensions/contractions of the package are presented. Linear elastic behavior is documented in the temperature region of room temperature to $125^{\circ}C$. Analysis of the package reveals that global bending occurs due to the mismatch of thermal expansion coefficient between the chip, the molding compound and the PCB. Detailed global and local deformations of the package by temperature change are investigated, concerning the variation of natural frequency of MEMS gyro chip.

  • PDF

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF

Optimum Monitoring Parameters for the Safety of Mechanical Seals (미캐니컬 씰의 안전운용 감시를 위한 최적 계측인자)

  • Soon-Jae Lim;Man-Yong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.214-219
    • /
    • 1997
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are generally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage, crack, breakage, fast and severe wear, excessive torque, and squeaking results in big problems. To identify abnormal phenomena on mechanical seals and to propose the proper monitoring parameter for the failure of mechanical seals, sliding wear experiments were conducted. Acoustic emission, torque, and temperature were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. Except for the initial part of every experiment, the variation of acoustic emission was well coincided with torque variation during the experiments. This study concludes that acoustic emission and torque are proper monitoring parameters for the failure of mechanical seals. The intensity of acoustic emission signals is measured in root mean square voltage. Temperature of sealing face will be used as a parallel parameter for increasing the reliability of monitoring system.

  • PDF