• Title/Summary/Keyword: 주파수선 추적

Search Result 4, Processing Time 0.015 seconds

The extraction method of unstable frequency line generated by underwater target using extended Kalman filter (확장 칼만필터를 이용한 수중 표적의 불안정 주파수선 추출 기법)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.104-109
    • /
    • 1996
  • In passive sonar system, frequency lines generated by underwater target are very important for detection, tracking and classification. In this paper, the extraction method of unstable frequency line from the time samples of the radiated noise of underwater target is studied. As unstable frequency line is time varying, an extended Kalman filter algorithm which is desirable for nonlinear system is applied to extract unstable frequency line. The proposed method shows good extraction of unstable frequency line by application of simulated signal and real target.

  • PDF

A Study on the Automatic Detection and Extraction of Narrowband Multiple Frequency Lines (협대역 다중 주파수선의 자동 탐지 및 추출 기법 연구)

  • 이성은;황수복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.78-83
    • /
    • 2000
  • Passive sonar system is designed to classify the underwater targets by analyzing and comparing the various acoustic characteristics such as signal strength, bandwidth, number of tonals and relationship of tonals from the extracted tonals and frequency lines. First of all the precise detection and extraction of signal frequency lines is of particular importance for enhancing the reliability of target classification. But, the narrowband frequency lines which are the line formed in spectrogram by a tonal of constant frequency in each frame can be detected weakly or discontinuously because of the variation of signal strength and transmission loss in the sea. Also, it is very difficult to detect and extract precisely the signal frequency lines by the complexity of impulsive ambient noise and signal components. In this paper, the automatic detection and extraction method that can detect and extract the signal components of frequency tines precisely are proposed. The proposed method can be applied under the bad conditions with weak signal strength and high ambient noise. It is confirmed by the simulation using real underwater target data.

  • PDF

Classification and Tracking of Unknown Multiple Underwater Moving Objects Using Neural Networks (신경망에 의한 미지의 다중 수중 이동물체의 판별 및 추적)

  • 하석운
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.389-396
    • /
    • 1999
  • In this paper, we propose a multiple underwater object classification and tracking algorithm using the narrowband tonal and frequency line features extracted from the frequency spectrum of the acoustic signal. The general algorithm using the wideband and narrowband energy has a high tracking error when objects are close and cross each other. But the proposed algorithm shows a good tracking performance for the simulation scenarios generated by the real acoustic data.

  • PDF

A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar (수동소나를 이용한 수중물체 자동판별기법 연구)

  • 이성은;최수복;노도영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF