• Title/Summary/Keyword: 주제탐지

Search Result 74, Processing Time 0.022 seconds

Text Mining-based Fake News Detection Using News And Social Media Data (뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.19-39
    • /
    • 2018
  • Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding "artificial intelligence R&D challenge" competition on the title of "searching for fake news." Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.

20세기 후반 한반도 극한 기온 사상(Extreme Temperature Events)의 변화 추이

  • 최영은;민승기;권원태
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.79-82
    • /
    • 2003
  • 인류의 활동으로 인해 전구적으로 일어나고 있는 기후 변화를 탐지하고 원인을 규명하는 것은 중요한 기후 연구 주제이다. 2001년에 발간된 IPCC 보고서는 기후에 대한 인류의 영향으로 19세기 후반 이후 지구의 평균기온이 약 0.7$^{\circ}C$ 상승했다고 결론지었다. 그러나 이러한 경향은 시공간적으로 일정하지 않을 뿐만 아니라, 평균 변화가 극한 사상의 변화를 반드시 이끌어 내는 것은 아니다. 하지만, 평균 변화는 사회나 생태계 전반에 걸쳐서 영향을 미치게 될 기후 행태를 변화시킨다. (중략)

  • PDF

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.

Development of Object Detection Algorithm Using Laser Sensor for Intelligent Excavation Work (자동화 굴삭기 작업을 위한 레이저 선서의 장애물 탐지 알고리즘 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop object detection algorithm for automated safety system in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability and verified its performance by several tests. The authors developed the objects detecting algorithm for user interface program using laser sensor. The results of this study would be the basis for developing the automated object detection system.

  • PDF

Implementation of A Plagiarism Detecting System with Sentence and Syntactic Word Similarities (문장 및 어절 유사도를 이용한 표절 탐지 시스템 구현)

  • Maeng, Joosoo;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.109-114
    • /
    • 2019
  • The similarity detecting method that is basically used in most plagiarism detecting systems is to use the frequency of shared words based on morphological analysis. However, this method has limitations on detecting accurate degree of similarity, especially when similar words concerning the same topics are used, sentences are partially separately excerpted, or postpositions and endings of words are similar. In order to overcome this problem, we have designed and implemented a plagiarism detecting system that provides more reliable similarity information by measuring sentence similarity and syntactic word similarity in addition to the conventional word similarity. We have carried out a comparison of on our system with a conventional system using only word similarity. The comparative experiment has shown that our system can detect plagiarized document that the conventional system can detect or cannot.

Multi-perspective User Preference Learning in a Chatting Domain (인터넷 채팅 도메인에서의 감성정보를 이용한 타관점 사용자 선호도 학습 방법)

  • Shin, Wook-Hyun;Jeong, Yoon-Jae;Myaeng, Sung-Hyon;Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Learning user's preference is a key issue in intelligent system such as personalized service. The study on user preference model has adapted simple user preference model, which determines a set of preferred keywords or topic, and weights to each target. In this paper, we recommend multi-perspective user preference model that factors sentiment information in the model. Based on the topicality and sentimental information processed using natural language processing techniques, it learns a user's preference. To handle timc-variant nature of user preference, user preference is calculated by session, short-term and long term. User evaluation is used to validate the effect of user preference teaming and it shows 86.52%, 86.28%, 87.22% of accuracy for topic interest, keyword interest, and keyword favorableness.

A Generation and Matching Method of Normal-Transient Dictionary for Realtime Topic Detection (실시간 이슈 탐지를 위한 일반-급상승 단어사전 생성 및 매칭 기법)

  • Choi, Bongjun;Lee, Hanjoo;Yong, Wooseok;Lee, Wonsuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2017
  • Recently, the number of SNS user has rapidly increased due to smart device industry development and also the amount of generated data is exponentially increasing. In the twitter, Text data generated by user is a key issue to research because it involves events, accidents, reputations of products, and brand images. Twitter has become a channel for users to receive and exchange information. An important characteristic of Twitter is its realtime. Earthquakes, floods and suicides event among the various events should be analyzed rapidly for immediately applying to events. It is necessary to collect tweets related to the event in order to analyze the events. But it is difficult to find all tweets related to the event using normal keywords. In order to solve such a mentioned above, this paper proposes A Generation and Matching Method of Normal-Transient Dictionary for realtime topic detection. Normal dictionaries consist of general keywords(event: suicide-death-loop, death, die, hang oneself, etc) related to events. Whereas transient dictionaries consist of transient keywords(event: suicide-names and information of celebrities, information of social issues) related to events. Experimental results show that matching method using two dictionary finds more tweets related to the event than a simple keyword search.

Object-based classification for building detection using VHR image and Lidar data (고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지)

  • Yoon Yeo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF

Object Tracking and Face extract by Real-time Image (실시간 영상에서 객체 추적 및 얼굴추출)

  • Lee, Kwang-Hyoung;Kim, Yong-Gyun;Jee, Jeong-Gyu;Oh, Hae-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.647-650
    • /
    • 2003
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 실제로 실시간 영상내의 객체 추적은 빠른 처리와 많은 연산은 요구하고 고가의 장비가 필요하기 때문에 많은 어려움이 따른다. 본 논문에서는 보안시스템에 적용될 수 있게 실시간으로 배경영상을 갱신하면서 객체를 추출 및 추적하고 추출된 객체에서 얼굴을 추출하는 방법을 제안한다. 배경영상과 입력영상의 차이를 이용하여 실시간으로 배경영상을 입력영상으로 대체하여 시간의 흐름에 의한 배경잡음을 최소화하도록 적응적 배경영상을 생성한다 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체의 크기와 위치를 탐지하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고 이를 통해 실시간 객체추적을 하였다. 또한 설정된 최소사각영역은 피부색의 RGB 영역에서 얼굴 영역을 추출하는데도 적용한다.

  • PDF

Forest Tree Species Analysis Model based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림 수종 분석 모델)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seung-Gi;Shin, Youngtae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.588-591
    • /
    • 2021
  • 4차 산업혁명 시대가 도래하면서 세상이 빠른 속도로 변하고 있다. 특히 데이터·인공지능(AI, Artificial Intelligence)의 활용이 적극적으로 다양한 분야에서 적용되기 시작하고 있다. 하지만 산림수종을 분석하는 업무를 수행하는 과정은 수작업으로 진행하다 보니 오류가 다수 발생하고 있다. 따라서 본 논문에서는 수도권 항공사진을 이용하여 소나무, 낙엽송, 침엽수, 활엽수를 대상으로 자동으로 분석하는 AI 학습용 데이터 약 60,000장을 구축하고, 수종을 구분할 수 있는 AI 모델을 개발하였다. 이를 통해 산림변화탐지 및 산림 분야 주제도 제작 시 수종 분할 이미지를 기초자료로 활용함으로써 업무효율 증대를 기대할 수 있다.