Journal of the Korea Society of Computer and Information
/
v.13
no.7
/
pp.59-66
/
2008
This paper describes a novel method for identifying the main topic and detecting topic changes in a text-based dialogue as in Instant Messaging (IM). Compared to other forms of text, dialogues are uniquely characterized with the short length of text with small number of words, two or more participants, and existence of a history that affects the current utterance. Noting the characteristics, our method detects the main topic of a dialogue by considering the keywords not only the utterances of the user but also the dialogue system's responses. Dialogue histories are also considered in the detection process to increase accuracy. For topic change detection, the similarity between the former utterance's topic and the current utterance's topic is calculated. If the similarity is smaller than a certain threshold, our system judges that the topic has been changed from the current utterance. We obtained 88.2% and 87.4% accuracy in topic detection and topic change detection, respectively.
Journal of the Korean Society for information Management
/
v.22
no.1
s.55
/
pp.191-208
/
2005
This study utilizes various approaches for new topic detection in the process of assigning and updating descriptors, which is a representation method of the knowledge structure. Particularly in the case of occurring changes on the knowledge structure due to the appearance and development of new topics in specific study areas, new topic detection can be applied to solving the impossibility or limitation of the existing index terms in representing subject concepts. This study confirms that the majority of newly developing topics in information science are closely associated with each other and are simultaneously in the phase of growth and development. Also, this study shows the possibility that the use of candidate descriptor lists generated by new topic detection methods can be an effective tool in assisting indexers. In particular. the provision of candidate descriptor lists to help assignment of appropriate descriptors will contribute to the improvement of the effectiveness and accuracy of indexing.
Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.12A
/
pp.1171-1180
/
2010
In wireless sensor networks, reliable event detection is one of the most important research issues. For the reliable event detection, previous works usually assume the events are only individual objects such as tanks and soldiers. Recently, many researches focus on detection of continuous objects such as wild fire and bio-chemical material, but they merely aim at methods to reduce communication costs. Hence, we propose a reliable continuous object detection scheme. However, it might not be trivial. Unlike individual objects that could be referred as a point, a continuous object is shown in a dynamic two-dimensional diagram since it may cover a wide area and it could dynamically alter its own shape according to physical environments, e.g. geographical conditions, wind, and so on. Hence, the continuous object detection reliability can not be estimated by the indicator for individual objects. This paper newly defines the reliability indicator for continuous object detection and proposes an error recovery mechanism relying on the estimation result from the new indicator.
Journal of Korean Library and Information Science Society
/
v.46
no.1
/
pp.321-344
/
2015
This paper presents a fusion approach to sentiment detection that combines multiple sources of evidence to retrieve blogs that contain opinions on a specific topic. Our approach to finding opinionated blogs on topic consists of first applying traditional information retrieval methods to retrieve blogs on a given topic and then boosting the ranks of opinionated blogs based on the opinion scores computed by multiple sentiment detection methods. Our sentiment detection strategy, whose central idea is to rely on a variety of complementary evidences rather than trying to optimize the utilization of a single source of evidence, includes High Frequency module, which identifies opinions based on the frequency of opinion terms (i.e., terms that occur frequently in opinionated documents), Low Frequency module, which makes use of uncommon/rare terms (e.g., "sooo good") that express strong sentiments, IU Module, which leverages n-grams with IU (I and you) anchor terms (e.g., I believe, You will love), Wilson's lexicon module, which uses a collection-independent opinion lexicon constructed from Wilson's subjectivity terms, and Opinion Acronym module, which utilizes a small set of opinion acronyms (e.g., imho). The results of our study show that combining multiple sources of opinion evidence is an effective method for improving opinion detection performance.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.95-96
/
2016
본 논문에서는 디리클레 분포와 베이즈 추론 모델을 활용하여 전자우편을 분류하고 정리하는 방법을 제안한다. 과거 원치 않는 광고성 이메일인 스팸 탐지에서 시작한 전자우편 분류는 지속적인 송수신 량의 증가와 내용의 다양화로 인해 광고성과 정보성의 판단 기준이 모호해진 상태이다. 스팸 탐지와 같은 이분법적 분류 방식이 아닌 내용의 주제 별로 자동 분류할 수 있는 방법이 필요하다. 본 논문에서 다루는 제안 기법은 전자우편의 내용에서 다뤄질 수 있는 주제의 종류를 예측하기 위한 방법을 제공한다. 발신하거나 수신된 전자우편이 속한 주제를 자동으로 정할 수 있다. 본 제안 기법의 활용을 통해 전자우편의 분류만이 아닌 업무 및 시장 동향 분석과 정보보안 분야에서는 악성코드 분류에 사용될 수 있을 것으로 기대된다.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.5
/
pp.45-51
/
2011
In this paper, we propose an unsupervised learning method for modeling motion trajectory patterns effectively. In our approach, observations of an object on a trajectory are treated as words in a document for latent dirichlet allocation algorithm which is used for clustering words on the topic in natural language process. This allows clustering topics (e.g. go straight, turn left, turn right) effectively in complex scenes, such as crossroads. After this procedure, we learn patterns of word sequences in each cluster using Baum-Welch algorithm used to find the unknown parameters in a hidden markov model. Evaluation of abnormality can be done using forward algorithm by comparing learned sequence and input sequence. Results of experiments show that modeling of semantic region is robust against noise in various scene.
Journal of the Korean Society for information Management
/
v.25
no.4
/
pp.227-243
/
2008
This study investigates an event detection method with the aim of generating an event-focused news summary from a set of news articles on a certain event using a multi-document summarization technique. The event detection method first classifies news articles into the event related topic categories by employing a SVM classifier and then creates event clusters containing news articles on an event by a modified single pass clustering algorithm. The clustering algorithm applies a time penalty function as well as cluster partitioning to enhance the clustering performance. It was found that the event detection method proposed in this study showed a satisfactory performance in terms of both the F-measure and the detection cost.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.590-593
/
2022
최근 코로나바이러스감염증-19(COVID-19)로 인해서 다양한 비대면 서비스가 증가하고 있는데 그 중에서 사람과 인공지능 간 의사소통하여 정보를 얻는 대화 시스템이 대표적인 서비스이다. 대화 시스템은 입력되는 단일 문장에 대한 정보만을 응답하기 때문에 이전 대화의 정보를 알기 위해서는 질문했던 내용을 다시 입력해야 하는 문제점이 있다. 이런 문제를 해결하고 대화 진행에 도움을 주기 위해서 본 논문에서는 대화 내 문장들의 다중 의도 탐지를 통한 공통 대화 주제 식별 시스템을 제안한다.
침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.