Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.19-22
/
2015
본 논문에서는 문장 및 문단에서 키워드의 역할에 따른 가중치에 근거하여 도서 본문에서 주제어를 추출하는 방법을 제안한다. 기존의 주제어 추출 방식은 도서 본문이 아닌 신문이나 논문에 대한 방식이므로 도서 본문에서의 주제어 추출에 그대로 적용하기에는 어려움이 있다. 따라서 본 논문에서는 빈도수뿐만 아니라 문장 내 중요 요소에 대한 가중치와 중요 문장에 대한 가중치를 후보 키워드에 부여하는 방식을 제안하였다. 제안한 계산 방식을 비문학 도서에 대하여 실험한 결과, 빈도수만으로 주제어를 추출한 기존 방식보다 본 논문에서 제안한 방식의 주제어 추출 결과의 정확도가 향상되는 것을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.469-471
/
2002
높은 연관성을 갖는 문서들을 서로 집단화시키는 문서 클러스터링은 문서와 문서간의 연관성을 확인할 수 있는 문서의 주제어 추출이 중요한 문제이며 일반적인 정보검색 시스템에서 사용하는 출현빈도에 의한 주제어 추출은 성능 향상에 한계가 있다. 또한, 문서 클러스터링은 문서를 집단화시키기 위해 문서간 연관성을 확인하기 위해 유사도 계산에 따른 시간과 공간을 많이 소비하는 문제를 가지고 있다. 본 논문에서는 주제어 추출 기법을 적용하여 주제어 연관성에 의해 문서들을 집단화시키는 새로운 방법의 문서 클러스터링 알고리즘을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.463-465
/
2005
문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.685-687
/
2002
일반적으로 인간이 사용하는 몇 개의 주요단어를 이용하여, 문서의 분야나 주제어가 되는 일본어 키워드를 추출하는 점에 주목한다. 먼저, 학술논문에서 저자 자신이 부여한 키워드 중 분야 명이나 주제어가 문서 중에 출현하지 않는 경우를 분석하고, 단어의 개념정보를 기초로 복합어 생성규칙을 구축한다. 문서 의미와 상관없는 키워드의 추출을 억제하기 위해 중요도 결정법을 새롭게 제안한다. 추출된 키워드의 타당성 검사를 위해 자연.음성언어에 관한 일본어 논문 65파일의 타이틀과 초록부분을 이용하여 추출된 키워드의 타당성에 대한 실험을 한 결과 추출 정밀도는 중요도의 상위 1개를 출력한 경우 75%가 되어 제안방법의 유효성을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.265-267
/
2000
본 논문에서는 텍스트 문서의 주제어를 추출하고 문서를 주제별로 분류하기 위해 확률적 그래프 모델을 사용하는 방법을 제안하였다. 텍스트 문서 데이터를 문서와 단어의 쌍으로(dyadic)표현하여 확률적 생성 모델을 학습하였다. 확률적 그래프 모델의 학습에는 정의된 likelihood를 최대화하기 위한 EM(Expected Maximization)알고리즘을 사용하였다. TREC-8 AdHoc 텍스트 에이터에 대하여 학습된 확률 그래프 모델의 성능을 실험적으로 평가하였다. 이로부터 찾아 낸 문서에 대한 주제어가 사람이 제시한 주제어와 유사한 지와, 사람이 각 주제에 대해 분류한 문서가 이 확률모델로부터의 분류와 유사한 지를 실험적으로 검토하였다.
Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.37-43
/
1997
본 논문에서는 기존의 키워드 검색 시스템의 불편함과 비효율성을 지적하고 이를 극복하기 위해 한국어 의문문 자체를 질의어로 채택하여 정보를 검색하는 자연어 기반의 정보검색 시스템을 제안하였다. 본 시스템은 주격 주제어와 서술격 주제어는 물론 의문의 초점과 초점 관련 어구에 대해서도 질의어 분석단계에서 분석하여 검색자의 요구에 부응하는 응답문 검색이 가능하도록 설계하였다. 본 논문에서는 의문문 질의 시스템에 적합하도록 의문사를 5형태로 분류하고 실제 한국어 문장에서 이들 각각에 대한 처리를 규칙화시켜 질의어의 체계적인 분석을 시도하였다. 한편, 후보 문장 검색을 위한 색인어로 사용되는 주격 주제어와 서술격 주제어를 정해진 규칙을 통해 추출함으로써 체계적이고 정확도 높은 질의어 분석이 이루어지도록 했다. 뿐만 아니라 의문의 초점과 초점 관련 어구또한 정해진 규칙을 통해 분석 추출함으로써 응답문 검색의 정확성을 높였다.
Annual Conference on Human and Language Technology
/
1994.11a
/
pp.374-377
/
1994
본 논문에서는 한글 문서 검색 시스템에서 자연어 질의어로 검색할경우, 질의어를 주제어와 참조어로 나누어 재구성하여 검색하는 방법을 제시하였다. 먼저 주제어로 전문검색을 하여 후보 카드들을 추출한 후 비주제어로 다시 본문 탐색을 하여 추출된 카드의 가중치를 재조정함으로써 카드추출의 정확성을 높였다. 이 논문에 제시된 방법의 실험은 한국전자통신연구소 언어정보연구실에서 개발한 멀티미디어 전자 백과 사전의 자연어 검색모듈에서 행하여 졌다. 이 방법으로 별다른 검색속도의 저하나, 저장공간의 추가가 없이 기존의 검색 방법에서보다 약 58%정도의 검색의 정확성이 올라갔다. 본 논문에서 제시한 검색의 방법은 여러가지 응용의 자연어 인터페이스에서 데이타를 검색하는 정보검색의 분야에 적용되어 정확성을 높일 수 있을 것이다.
This paper describes the hybrid document summarization using the indicative summarization and the query-based summarization. The learning models are built from teaming documents in order to extract topic phrases. We use Naive Bayesian, Decision Tree and Supported Vector Machine as the machine learning algorithm. The system extracts topic phrases automatically from new document based on these models and outputs the summary of the document using query-based summarization which considers the extracted topic phrases as queries and calculates the locality-based similarity of each topic phrase. We examine how the topic phrases affect the summarization and how many phrases are proper to summarization. Then, we evaluate the extracted summary by comparing with manual summary, and we also compare our summarization system with summarization mettled from MS-Word.
Proceedings of the Korean Society for Information Management Conference
/
1998.08a
/
pp.215-218
/
1998
신문만화는 신문에 실린 기사중 가장 핵심적인 내용을 간략한 그림으로 함축하여 정보를 전달한다. 그러나 만화의 함축성과 비유, 짤막한 텍스트 때문에 객관적인 색인어의 추출이 어려운 것이 사실이다. 본 연구에서는 신문만화에서 키워드를 추출하기 위하여 만화의 내용과 관련이 있는 신문기사에서 색인어를 추출하는 방안에 대해 논하였다. 연구에서는 조선일보에 게재된 한컷만화과 네컷만화를 각 1점씩 예로 들어 비주제색인어와 주제색인어를 부여하였다. 특히 주제색인어는 내용상의 연관성이 있는 신문기사를 선정하여 추출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.