• Title/Summary/Keyword: 주입 시공

Search Result 166, Processing Time 0.024 seconds

A Study on Seepage Cutoff Effect of the Environmentally Friendly SCM (SCM 친환경주입공법에 의한 차수 효과에 관한 연구)

  • Chun, Byung-Sik;Roh, Jong-Ryun;Jooi, Tae-Seong;Do, Jong-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2005
  • Recently, difficulties in soft ground improvement that caused by effectiveness of the ground improvement, the durability and environmentally friendliness of the injection material come to the fore. This paper studies the field applicability of the SCM in reinforcement and seepage cutoff of the back of an existing continuous wall. SCM uses double rod which imposes heavy pressure($10-100kgf/cm^2$) to disturbed, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Unconfined compression test and fish poison tests are performed. Test results indicate that the method results in higher durability, less leaching through use of the environmentally friendly injection material, and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

  • PDF

An Experimental Study on the Bearing Characteristics of Auger-Cast Pile Installed Using Expansive Mortar

  • Yoon, Sung-Soo;Lee, Won-Je;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.99-111
    • /
    • 1999
  • The frictional capacity of auger-cast piles is often very small because of the disturbance of the soil surrounding the pile during the excavation process. Usage of expansive agents and a pressurized injection technique for auger-cast piles should improve the frictional resistance between pile and soil. This paper presents the test results of auger-cast model piles installed with expansive mortar in laboratory compacted weathered soil. The model piles were installed in a calibration chamber with a variation in the amount of expansive agent, the injection process and the chamber pressure. It was observed that the pile shaft resistance increases with the increased amount of expansive agent, and also increases when mortar is pressure injected. The shaft resistance increased up to 24% for the pile installed only with expansive mortar and increased up to 56% for the pile installed with the pressurized injection of expansive mortar, compared with that of piles with plain mortar.

  • PDF

Application of Grouting for Liquefaction Resistance Using Automatic Grouting System (그라우팅자동관리시스템을 이용한 액상화 방지 그라우팅의 적용)

  • Kong, Jinyoung;Kang, JunO;Cho, Hyunsoo;Kim, Jinchun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.79-87
    • /
    • 2011
  • This study conducted the research on the method of grouting quality management and the improvement effect by applying grouting construction's quality management technology to automatic injection management equipment through measure of liquefaction based on the case of reinforcement applying grouting at the region where liquefaction happened at section 12 site of highway construction. The pressure(p), speed(q), grouting penetration radius(R) value from injection pressure, injection speed, characteristics of grain size, and characteristics of viscosity through p-q-t chart analysis was applied to the automatic grouting system which could improve the quality management of grouting. Standard penetration test results after injection showed that N values represented 5-20 and the prevention of liquefaction became possible.

Applicability of Solidified Soil as a Filling Materials of Bored Pile (매입말뚝 충전재로서 고화토의 적용성)

  • Kim, Khi-Woong;Chai, Jong-Gil;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • The cement paste is mostly used as the filling materials of bored pile in Korea. The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The injection capacity of solidified soil is compared with cement paste's based on unconfined compressive strength test and field load test, and the appropriate of test results is evaluated by design criterion. The evaluation result shows that the capacity of excavated soil with stabilizer is similar to cement paste and the solidified soil is able to apply as filling materials of bored pile because it is satisfied with design criterion.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.

A Study of Field Mixing Ratio using Bio-grouting Injection Material (바이오그라우팅 주입재를 이용한 현장 배합비에 관한 연구)

  • Park, Ilehoon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • This study aims to develop a bio-grouting material in a powder form like cement. Sand gel samples were produced with the ratio of sodium silicate No.3 to water (50 : 50, 35 : 65, 20 : 80), and the ratio of cement to bio-grouting material (100 : 0, 90 : 10, 70 : 30) to select a mixing ratio of bio-grouting, respectively, and then analyzed the geltime over time. The uniaxial compressive strength was evaluated to select and suggest a mixing ratio optimized for construction conditions. The indoor test reveals that preferred geltime and uniaxial compressive strength is obtained in 35 : 65 with respect to the ratio of sodium silicate No.3 to water, and 90 : 10 with respect to the ratio of cement to bio-grouting material to demonstrate best optimal mixing ratios.

A Study on Soil Improvement Effects under Poor Ground Conditions (열악한 지반조건에서 고질공법의 지반보강효과 증대에 관한 연구)

  • 천병식;최기성
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-132
    • /
    • 1996
  • Several soil improvement methods are applied to stabilize soft ground. But, their improvement effects are known to be reduced in view of strength and durability under poor conditions such as marine clay and the ground with the flow of groundwater. The soil improvement method is generally classified as mixing(high pressure) type and injection type, and in this study, for successflll'applications of gelling methods, first in case that mixing method with cement is applied to marine clay, the causes of strength inferiority of treated soil are analyzed, and the effectiveness of improvement is studied, second in case that injection method with water-glass chemical grouts is applied to the ground with the flow of groundwater, soil improvement effects and durability of grouted soil are studied.

  • PDF

차폐팩커(protection packer)를 이용한 지하수 심정의 역주입 상향식 그라우팅 방법 연구

  • 조희남;임승태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.106-109
    • /
    • 2004
  • 지표하부 상층 오염지하수의 침투로 인한 암반 지하수의 오염을 방지하기 위하여 지하수 개발과정에서 반드시 지표하부 지하수 오염방지를 이행하도록 지하수법에 규정하고 있다. 널리 알려진 지표하부 오염방지 공법으로서는 팩카그라우팅 공법(packer Grouting Method), 트레미공법(Tremie Method)과 브레든 헤드 공법(Bradenhead Method)이 있다. 그러나, 현재 대다수의 지하수 개발 현장에서는 단순히 강관을 굴착공에 억지박음함으로써 지표하부 오염방지에 가름하는 사례가 다반사이며 깊은 심도의 경우에도 종래 공법으로는 한계를 가질 수밖에 없는 실정이었다. 따라서, 본 연구에서는 차폐 팩카(Protection Packer)를 이용하여 고, 저심도의 어느 지하수 심정에서나 용이하게 역주입 상향그라우팅이 가능한 여건이 될 수 있도록 시공 사례를 통해 연구를 수행하였다.

  • PDF

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF

Evaluation of field applicability for grouting method using self-healing grout material (자기치유 물질을 이용한 그라우팅공법의 현장적용성 평가)

  • Choi, Yong-Sung;Kim, Byoung-Il;Yoo, Wan-Kyu;Lee, Jae-Dug;Choi, Yong-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.485-500
    • /
    • 2020
  • Due to various advantages such as small facilities, ease of construction and so on, the grouting technology which is widely used in construction field has developed remarkably compared with the past. However, the efforts to improve the homogeneity of quality, long-term durability and environmental problems have been continued. In recent years, new grouting method has been developed in order to solve problems such as low strength, durability and leaching phenomenon of liquid glass (sodium silicate) grouting material in Korea. A newly developed method integrates the injection material with the ground by the self-healing material of crystallization growth type. For this reason, it is known that improvement of the durability and water quality of the ground, prevention of leaching, and environment friendliness can be expected. The present study applied a newly developed method to test sites and verified its effect such as injection range, improvement effect, waterproofing performance and so on. Standard penetration test, field permeability test, borehole shear test, pressuremeter test and pH test were conducted, and the results were compared between before and after developed method application. As results of tests, the field applicability and improvement effect of developed method were proved to be excellent.