• Title/Summary/Keyword: 주입재 배합

Search Result 31, Processing Time 0.022 seconds

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Determination of Solidified Material's Optimum Mixing Ratio for Reservoir Embankment Reinforcement (저수지 제체 보강을 위한 고화재 최적 배합비 결정)

  • Jaegeun Woo;Jungsoon Hwang;Seungwook Kim;Seungcheol Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2024
  • Currently, a grouting method that minimizes damage to the reservoir embankment by injecting solidification agent at low pressure is commonly used to ensure waterproofing and safety of the embankment, but the use of solidification agents can cause issues, such as a decrease in durability and a lack of clear method for determining the mixing ratio. In this study, when the base ground and solidification agent were stirred and mixed at various weight mixing ratios, the permeability coefficient and strength of the mixture were confirmed through laboratory tests, and the optimal mixing ratio was suggested through analysis of the test results. The specimen for the laboratory test was produced considering the mixing ratio of the solidification agent. The specimen for the permeability coefficient test was tested by producing one each of cohesionless and cohesive soil for a mixing amount of 1.5 kN/m3 of solidification agent, and the permeability test results confirmed that the water barrier performance was secured below the permeability coefficient value required by various design criteria. A total of 24 specimens for the strength test were produced, 3 for each of 5 mixing amounts for cohesive soil and 3 mixing amounts for cohesionless soil. The strength test results showed that the uniaxial compressive strength tends to increase linearly with increasing curing time for both cohesionless soil and cohesive soil when the mixing amount is less than 2.0 kN/m3. Therefore, the optimal mixing ratio applied to the site is determined to be mixing amount of 1.5 kN/m3 and 2.0 kN/m3. Finally, numerical analysis reflecting test results was conducted on design case for improvement projects for aging reservoirs embankment to verify the water barrier performance and safety improvement effects.

The Injection Characteristics and Environmental Effects for Grouting Materials Based on Cement (시멘트계 주입재 종류별 주입 특성 및 환경적 영향 연구)

  • 천병식;이재영;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.159-170
    • /
    • 2003
  • In this study, the mixed design of grout with hish strength.high permeation.high durability and environmental stability as the state of the art in material field was performed. Also, the subjects of grouting, grouting effects for ground conditions, and environmental effects were analyzed. According to these results, the fundamental data will be suggested as a design of grouting in the field application. The physical, mechanical and chemical characteristics with particle shape of the grouts were analyzed. Then, the gel-time of grouts, which is essential for workability and permeation range, were controlled. Also, the laboratory model grouting tests were performed to find the characteristics of solidification, permeation and durability with grouts. The ordinary portland, slag and microcement which have been used in the construction field were evaluated fur the environmental effects. To find the leaching of $Cr^{6+}$characteristics in cement grouts, $Cr^{6+}$ leaching tests were performed for the raw materials. Also, the results of leaching test were shorn by surrounding environment. Then, the unconfined compression strength tests were performed with the homo-gel samples, and the amount of changed $Cr^{6+}$ was measured by curing solution.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Time-dependent characteristics of viscous fluid for rock grouting (암반 그라우팅을 위한 점성유체의 시간의존 특성 분석)

  • Lee, Jong-Won;Kim, Ji-Yeong;Weon, Jo-Hyun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.465-481
    • /
    • 2022
  • Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.

A Study on the Durability and Environmentally Friendly of Inorganic Grouting Material (무기질계 지반주입재의 내구성 및 친환경적 특성에 관한 연구)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Inorganic injection material, which is one of the ground improvement materials, consists of cement accelerator and inorganic micro particle. The inorganic injection material is known to overcome the major limitations of water glass type improvement materials, which are leaching and accompanying strength loss. The inorganic injection material is superior in durability and strength, and environmentally friendly since leaching is prevented. In this study, the effectiveness and environment-friendliness of the MIS(Micro Injection-process System) using the inorganic injection material is compared to SGR, which uses the water glass. The performed tests were unconfined compression test, chemical resistance test, and fish poison test. The unconfined compression tests showed that the MIS results in 1.7 times higher 28 day strength compared to the SGR. In addition, the strength continually increased with time for the MIS, while it decreased for the SGR. The chemical resistance tests indicated that the rate of change in length using the MIS is 10~25 times smaller than when using the SGR. The fish poison test proved that MIS was more environmentally friendly. The analysis of chemical ingredients of leached showed that the amount of $Cr^{6+}$, Pb and Si leached from the MIS is less compared to the SGR. Accordingly, the MIS grout is more high-strength than existing SGR grout. It is excellent in shortening of construction period, structural stability of foundation and environmentally friendly. So, it is considered that it has not little the problem about groundwater pollution.

  • PDF

Evaluation of Field Application for the mix properties of the thixotropic grout (가소성그라우트의 배합특성 및 현장 적용성 평가)

  • Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4223-4238
    • /
    • 2011
  • The advantages of grouting are the simple instrument, the simple procedure of practice and the simple verification of grouting result. but the more grouting practice there is, the more damages of environment from grouting practice and grouting materials there are. so, the grouting materials and methods with the character of environment friendly are introduced in construction field, recently. This paper is to study of the physical characteristics that has thixotropic character and that consists of inorganic and polycarboxylate co-polymer. In study, various testing methods are performed such as a viscosity, a thixotropy, a compressive strength, a heavy metal detection and pH measurement in lab test and a low pressure injection test and a high pressure injection test in field with different soil type. As a result, a optimum mix ratio is proposed by analyzing the result of lab test. the field applicability is verified by checking a injection pressure, a grout volume and a hardened body of grout by excavating the practice site.

Optimum Conditions of Simple Solidifying Agent for the Improvement of Loose Sand Ground (느슨한 모래지반 개량을 위한 간편고화재의 최적 배합비 및 혼합률)

  • Kwon, Ho-Jin;Jeong, Ki-Ryong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to develop simple solidifying agent to improve loose sand ground by admixing or injecting. This paper studied the optimum mixing ratio of micro cement, bentonite, chemistry admixture, plasticizer, accelerator for the optimum fluidity and strength. The optimum mixing ratio of micro cement and bentonite is 70% : 20%, the optimum ratio of the weight of rapid solidifying agent to the weight of total improved soil is about 8%, the optimum curing period is five days.

  • PDF

Properties of Grout Material for Seawall Using Slags from Steel Making Industry (철강산업부산물을 사용한 방조제용 그라우트 재료 및 그 특성)

  • Ha-Seog, Kim;Kee-Seok, Kim;Bong-Hyun, Baek;Sim-Hoon, Yook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.523-530
    • /
    • 2022
  • The problem in the construction of seawall reinforcing the seawall where there is seawater flow is the outflow of materials. Gravity-type pouring of concrete is difficult to fill the voids smoothly, and the cement of concrete that has not hardened is likely to be dispersed in seawater. This phenomenon not only reduces the reliability of quality after concrete hardening, but can also adversely affect the surrounding environment. Therefore, there is a need for a gel-like injection material that can be injected, In this study, the initial strength and durability improvement effect of seawater immersion were evaluated by using electrofurnace reduction slag and blast furnace slag with acute properties. As a result of the experiment, it was possible to prepare a gel-like injection material having flowability through reaction with silica-based chemical liquid. The flowability of the gel is 105~143 mm depending on the formulation, and the on-site simulation test can fill the voids without external leakage, confirming its on-site applicability.

An experimental study on the viscosity features of sealant (bentonite-cement slurry) in umbrella arch method (강관다단공법에 적용되는 씰링재 (벤토나이트-시멘트 슬러리)의 점성 특성에 대한 실험)

  • Sagong, Myung;Lee, Jun S.;Park, Jeongjun;Cho, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.773-786
    • /
    • 2018
  • In this paper, viscosity features of sealant (bentonite-cement slurry), which is used for umbrella arch method in tunnel, were studied. The sealant must secure optimal strength and capacity for the waterproof and stabilization of borehole as well as to satisfy groutability. In this study, the variation of viscosity was measured with different mixing processes. With an increase of initial mixing period with water and bentonite mixture, the required time for the rapid increase of viscosity of the sealant is shorten. With increase of mixing period, the possibility of swelling of bentonite will increases and this can lead increase of the viscosity of the mixture. In addition, the behaviors of sealant vary with a drastic increase of the viscosity: thixotropy and rheopexy. Furthermore, the bentonite/water mixing period influences on the bleeding features of the sealant. Further study is required to introduce the guideline, which can be applicable in the field in the aspect of required capacity of the sealants and mixing processes of the ingredients.