• Title/Summary/Keyword: 주응력 방향

Search Result 342, Processing Time 0.025 seconds

Estimation of principle stress field by Televiewer data analysis (텔레뷰어 자료분석을 통한 암반 내 수평 주응력 방향 산출)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.815-822
    • /
    • 2004
  • A knowledge of in situ stress state is important to design various engineering structures such as dams, tunnels and so on. There are about three wellknown indicators that is, borehole will breakouts, hydraulic fracturing, ellipsoidal cross section of borehole that have been attributed to the state of stress in the vicinity of borehole. Fortunately, Televiewer traveltime image can be used as a caliper log with 144 or 288 arms, which allows to determine the borehole shape. Televiewer amplitude image will give detailed information about the distribution and character of breakouts and hydraulic fracturing as well. For investigation purposes, a series of boreholes(total 195 boreholes: 12.239m) that have been logged all over the country during past 10 years are analyzed. The primary objective of this paper are to examnine the ability of a Televiewer to determine the shape of borehole, to present data inferred by stress indicators, to indicate their possible relationship with the anisotropic horizontal stresses. It is shown that in most cases the fracture orientation statistically estimated from observed fractures denotes an excellent correlation with the orientations inferred by stress indicators. Many intervals of breakouts are terminated at the intersection of oblique fracture with the borehole. The results from Televiewer data are further compared with those of hydraulic fracturing techniques.

  • PDF

A Study of the effectiveness of Pre-drying on the dyeing of wood blocks (예비건조를 도입한 염색무늬목의 공정개선효과 고찰)

  • Kim, Moon-Jeong;Lim, Kyung-Soo;Heo, Seong-Yong;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.49-49
    • /
    • 2011
  • GNP 증가 등의 요인으로 생활수준이 향상되면서 사람들의 고급스럽고 아름다운 공간에 대한 선호도가 점점 증가하고 있으며 따라서 실내 인테리어 산업에 대한 관심이 높아지고 있다. 인테리어 산업에서 주로 사용되는 무늬목은 나무 모양이 나게 무늬를 새겨 넣어, 외양을 장식하는 얇은 합판으로 나무의 고급스러움과 아름다움으로 인해 고부가가치 상품으로 자리잡고 있으며 주로 실내인테리어장식 및 가구, 마루바닥, 건축내장재, 제재목 등의 건축 자제의 용도로 사용되고 있다. 또한 천연목재를 이용한 다양한 가공법으로 아름다운 무늬의 재현 등을 실제 이루고 있으며, 천연 목재의 색감 외 표백/염색/가공을 통한 염색무늬목 제조도 이루어지고 있는 실정이다. 무늬목 염색가공에 대한 기술이 보편화되지 않은 실정에서 고부가가치형 기술로 자리 매김 하기 위해서는 제조공정 시 보다 안정적인 작업성과 최소한의 작업 변수를 확보하는 것이 무엇보다도 중요하다. 이에 본 연구에서는 고부가가치형 무늬목의 생산성을 향상하고, 불량률의 최소화를 궁극적 목적으로 하며, 실제 침염목의 건조공정 중 최적의 함수율을 확보할 수 있는 예비건조 시스템을 개발 적용하여 시간과 에너지 절감 효과를 확보하였다. 생산 중 최대의 불량현상으로 갈라짐(건조로 발생한 응력에 의해 목리방향으로 갈라지는현상:checks)과 건조공정의 지연으로 발생하는 부패현상도 개선하였다.

  • PDF

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

A Study on Key Parameters and Distribution Range in Rock Mechanics for HLW Geological Disposal (고준위방사성폐기물 심층처분을 위한 암반공학분야 핵심 평가인자 및 분포범위 연구)

  • Dae-Sung, Cheon;Won-kyong, Song;You Hong, Kihm;Kwangmin, Jin;Seungbeom, Choi
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.530-548
    • /
    • 2022
  • The site selection process for deep geological disposal of high-level radioactive waste will be conducted in stages, and 103 evaluation parameters related to site selection have been proposed. In the field of rock mechanics and rock engineering, there are 33 evaluation parameters for intact rock, joint and rock mass, and they are applied in the basic and detailed investigation stages. In this report, uniaxial compressive strength, in-situ stress, joint distribution, and rock mass classification were selected as the main evaluation parameters, and among them, uniaxial compressive strength and in situ stress were selected as key evaluation parameters. Statistical techniques or regression analysis were performed for granite in Wonju and Chuncheon to evaluate the distribution range for the selected key evaluation parameters. The average of the uniaxial compressive strength in the Wonju area estimated through the posterior distribution is about 171 MPa, and about 123 MPa in the Chuncheon area. The maximum in situ stress acting in the Wonju area was less than 30 MPa and less than 40 MPa in the Chuncheon area. The direction of the maximum horizontal stress calculated by regression analysis was 101° in Wonju, and in the case of Chuncheon, it was 95°, respectiviely.

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

Trends of Research and Practical Use on Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete (고강도콘크리트의 폭렬대책공법에 대한 국내외 현황과 성능적 구조내화설계를 위한 과제)

  • Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.935-940
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete.

  • PDF

The influence of mechanical damage on the formation of the structural defects on the silicon surface during oxidation (규소 결정 표면의 구조 결함의 형성에 미치는 기계적 손상의 영향)

  • Kim, Dae-Il;Kim, Jong-Bum;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • During oxidation process, several type of defects are formed on the surface of the silicon crystal which was damaged mechanically before oxidation. As the size of abrasive particle increases multiple dislocation loops are produced favorably over oxidation-induced stacking faults, which are dominantly produced when ground with finer abrasive particle. These defects are not related with the crystal growth process like Czochralski or directional solidification. During directional solidification process, twins and stacking faults are the two major defects observed in the bulk of the silicon crystal. On the other hand, slip dislocations produced by the thermal stress are not observed. Thus, not only in single crystalline silicon crystal but also in multi-crystalline silicon, extrinsic gettering process with programmed production of surface defects might be highly applicable to silicon wafers for purification.