• Title/Summary/Keyword: 주시 토모그램

Search Result 18, Processing Time 0.02 seconds

Study of Seismic Data Processing Method for Tunnel Detection (터널탐사를 위한 탄성파 자료처리법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.633-642
    • /
    • 2007
  • Traveltime tomogram is generally used for interpretation of seismic tunnel data. In the field data, the first arrival traveltime is less dispersive with increasing source-receiver seperation compared to theoretical model data. So the result of calculation can be serious despite of small errors such as traveltime picking. In this study, amplitude method and error tomogram method are tried to overcome these problems. This method will help the interpretation of the data from the underground tunnel.

Investigation of Concrete Flaw Using Seismic First Arrival (탄성파 초동주시를 이용한 콘크리트 구조물의 결함 탐지)

  • 서백수;장선웅;김석현;서정희
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.120-121
    • /
    • 2001
  • The purpose of this study is to investigate concrete flaw using seismic first arrival and various inversion method. Seismic wave propagation was calculated using finite element method in theoretical modelling and tomogram was made using various inversion methods in theoretical and experimental modelling. Five steps of seismic first arrival were selected from FEM results and these data were used to calculate seismic velocity section. According to the results, exact seismic first arrival picking method was proposed and experimental modelling was conducted.

  • PDF

Development and Application of a Seismic Tomography Software Based on Windows (탄성파 토모그래피 자동화 처리 소프트웨어 개발 및 적용성 검토)

  • Jung, Sang-Won;Ha, Hee-Sang;Ko, Kwang-Beom
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • In this study, a travel-time tomography software was developed under the MS Windows system and GUI environment for user. The software supports following features: (1) supporting various data input format (2) flexible treatment of shot and receiver coordinate coding (3) flexible first arrival picking and modification (4) easy modification of intermediate tomogram. It is expected that the effort of the user can be minimized in each data processing step.

3D Seismic Travel-time Tomography using Fresnel Volume (프레넬 볼륨을 이용한 3차원 탄성파 주시 토모그래피)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • 3D seismic travel-time tomography algorithm baled on Fresnel volume was developed and its feasibility was investigated by the numerical experiments. To testify the field applicability of the developed algorithm, frequency characteristics and way coverage of the crossholel seismic raw data were investigated and 3D velocity tomogram cube with about 8m spatial resolution was obtained. When compared this 3D velocity cube with the conventional 2D ray tomogram, two results were matched well. We concluded that 3D seismic tomography algorithm developed in this study has enough potential to the field application.

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

Tunnel Detection Using Seismic Multi-source Amplitude Data (복수파동원의 탄성파 진폭법을 이용한 터널탐사에 관한 연구)

  • Suh, Baek-Soo;Kim, Hoon;Sohn, Kwon-Ik
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.377-382
    • /
    • 2007
  • Several prospecting methods have been used to detect deep seated small tunnel in Korea. Tunnel interpretation of seismic method has been performed mainly by wave traveltime inversion method. But it often gives inacurate solution for the exact tunnel position because of the short distance between two measuring boreholes and picking errors of first arrivals. In this study, "error tomogram" was proposed to detect tunnel position and applied to theoretical and field dat using multi-source amplitude data.

Simultaneous traveltime inversion of surface and borehole seismic data in Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 동시역산)

  • Kim, Ki-Yeong;Hong, Myung-Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Velocity structures were defined in the vicinty of the 140-m deep test borehole in the pungam basin through simultaneous inversion of surface seismic refraction and far-ofset VSP traveltime data. Seismicenergy generated at the surface by a seisgun was recorded both at 42 surface locations at 3-m intervalsalong the profiles in the N20E and its orthogonal directions and at 71 m depth in the borehole. Forthe ofset VSP study, seismic energy was generated by a 5 kg sledgehamer at the surface in the horizontal ofset range of -19.5∼+19.5 m from the borehole. The seismic signals were detected at 9∼99 m depths with 1∼2 m intervals and recorded for 204 ms per shot. After shot static corrections,first-arrival times picked from both the surface refraction and borehole records were simultaneouslyinverted to yield velocity tomograms. The tomograms indicate that a 1.5 m thick soil layer with velocities les than 500 m/s overlies basements having a velocity range of 3,067 ∼5,717 m/s. Within the basements,∼4 m and deeper than 71 m. The high-velocit yzones may be due to conglomerates intercalated with sandstones and siltstones. No evidence for large-scale fracture zones or faults is detected near the borehole

  • PDF

A Study on the Limitations in the Field Application of Seismic Mini-tomography (소규모 탐사단면에 대한 탄성파 토모그래피의 현장 적용 한계성 연구)

  • 김중열;김유성;현혜자;김기석
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 1996
  • Frequency content of seismic waves observed in field seismic survey in Korea has almost not exceeded 4kHz(wave length 1m). The limited frequency content not only restricts the minimum size of objects which can be surveyed in seismic tomogrpahic application, but also makes a fundamental limit in the resolution of tomogram. This paper shows the resonable result obtained by confirmimg and resolving the problems which can be occured m measuring procedure for the small - sized section through field application. Seismic tomographic field survey was performed for a concrete construction for railroad bridge in Korea, and to this the tomographic measurements for the stone-build foundation construction for a bell house of church in Germany were compared.

  • PDF

Resolution Limits of Cross-Well Seismic Imaging Using Full Waveform Inversion (전파형 역산을 이용한 시추공 영상의 분해능)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • It was necessary to devise new techniques to overcome and enhance the resolution limits of traveltime tomography. Waveform inversion has been one of the methods for giving very high resolution result. High resolution image could be acquired because waveform inversion used not only phase but amplitude. But waveform inversion was much time consuming Job because forward and backward modeling was needed at each iteration step. Velocity-stress method was used for effective modeling. Resolution limits of imaging methods such as travel time inversion, acoustic and elastic waveform inversion were investigated with numerical models. it was investigated that Resolution limit of waveform inversion was similar tn resolution limit of migration derived by Schuster. Horizontal resolution limit could be improved with increased coverage by adding VSP data in cross hole that had insufficient coverage. Also, waveform inversion was applied to realistic models to evaluate applicability and using initial guess of travel time tomograms to reduce non-linearity of waveform inversion showed that the better reconstructed image could be acquired.

A Study to Estimate the Onset Time of an Impulsive Borehole Source (임펄시브형 시추공용 탄성파 송신신호 시작시간 측정에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • Accurate estimation of the first arrival travel time is an essential task to obtain a high resolution velocity tomogram. Accuracy of the travel time estimation may be influenced by two factors; geological and mechanical. A serious mechanical factor is the source firing control problems. We found the control problems in the records generated by tome impulsive borehole sources. The problems are; irregular firing control and uncertainty in estimation of the absolute firing-times shown in records. Definitely, the time difference will introduce an error to the first arrival times, and accordingly; it will cause some distortion in the resulting velocity tomogram. A method to determine the firing time is suggested here. The method determines the optimum onset time by comparing the horizontal and the NMO velocity with various amount of delay time adjustment.