• Title/Summary/Keyword: 주성분 분석(PCA)

검색결과 656건 처리시간 0.025초

주성분 분석을 활용한 생체인식 (Biometrics through PCA & LDA)

  • 오세빈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.515-518
    • /
    • 2017
  • 생체인식기술을 보안에 활용하기 위해 주성분분석을 활용한다. 손의 모양과 동작의 구분을 확인하기 위해 ㄱ부터 ㅎ까지의 수화동작을 촬영한다. 총 스무 명의 성인 남성이 실험에 참여했으며, 각 자음 당 10회씩 촬영을 진행하여 1인당 140장, 총 2800장의 사진을 통해 데이터베이스를 확보하였다. 이를 통해 얻은 데이터베이스에 MATLAB을 이용하여 이미지의 차원을 줄여주는 주성분분석(PCA)과 주요인분석법(LDA)을 적용하여 분석하고, 그 정확도와 신뢰도를 확인하기 위해 동일오류율(EER)을 이용한다.

  • PDF

주성분분석을 이용한 다중시기 원격탐사 자료분석 (Multi-temporal Remote Sensing Data Analysis using Principal Component Analysis)

  • 정종철
    • 한국지리정보학회지
    • /
    • 제2권3호
    • /
    • pp.71-80
    • /
    • 1999
  • 본 연구의 목적은 Landsat TM 자료를 이용하여 시화호로부터 황해로 방류되는 오염된 시화호물의 방류범위를 해석하는 것이다. 본 연구지역은 Case 2 water에 속하는 지역이기 때문에 엽록소와 부유사의 정량적인 해석을 위한 알고리듬을 적용하는데는 한계가 있다. 본 연구의 초점은 다중시기의 Landsat TM 자료를 이용하는데 있다. 즉, 시화호로부터 방류되는 방류수의 공간적인 확산범위를 관측하기 위해 주성분분석을 적용하였다. 주성분분석의 결과는 엽록소, 부유사, 투명도, 표층수온, SeaWiFS 채널의 수중광학 측정결과인 반사치와 비교하였다. 그리고, PRR-600에 의해 얻어진 수중 광학 반사치는 Landsat TM 자료에서 얻어진 주성분분석 결과와 함께 분석되었다. 이러한 현장관측자료를 바탕으로 비록 다른 현장관측 측정변수가 낮은 상관관계를 나타냈음에도 불구하고 투명도(Secchi Disk Depth)와 주성분분석의 제 1 성분이 $R^2$=0.7631의 좋은 상관관계를 나타내었다. 또한 본 연구에서는 다중시기의 원격탐사자료를 사용하여 주성분분석을 할 때 나타나는 여러 문제를 토의하였다.

  • PDF

점진적인 주성분분석기법을 이용한 고차원 자료의 특징 추출 (Feature Extraction on High Dimensional Data Using Incremental PCA)

  • 김병주
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1475-1479
    • /
    • 2004
  • 고차원 자료를 효율적으로 처리하기 위해서는 특징 추출 기법이 필요하다. 주성분분석 방법은 대표적인 특징추출 방법이지만 학습 자료의 차원이 큰 경우에는 고유공간을 계산하기 위해 많은 기억공간과 계산량을 필요로 한다. 본 논문에서는 고차원 자료의 특징 추출을 위해 점진적인 주성분분석 방법을 사용한다. 제안한 방법에 대해 신경망에서 점진적인 주성분분석을 하는 대표적인 방법인 APEX모델과 실험을 통해 비교해 본 결과 제안된 방법이 APEX 모델 보다 성능이 우수함을 나타내었다.

계층적 벌점함수를 이용한 주성분분석 (Hierarchically penalized sparse principal component analysis)

  • 강종경;박재신;방성완
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.135-145
    • /
    • 2017
  • 주성분 분석(principal component analysis; PCA)은 서로 상관되어 있는 다변량 자료의 차원을 축소하는 대표적인 기법으로 많은 다변량 분석에서 활용되고 있다. 하지만 주성분은 모든 변수들의 선형결합으로 이루어지므로, 그 결과의 해석이 어렵다는 한계가 있다. sparse PCA(SPCA) 방법은 elastic net 형태의 벌점함수를 이용하여 보다 성긴(sparse) 적재를 가진 수정된 주성분을 만들어주지만, 변수들의 그룹구조를 이용하지 못한다는 한계가 있다. 이에 본 연구에서는 기존 SPCA를 개선하여, 자료가 그룹화되어 있는 경우에 유의한 그룹을 선택함과 동시에 그룹 내 불필요한 변수를 제거할 수 있는 새로운 주성분 분석 방법을 제시하고자 한다. 그룹과 그룹 내 변수 구조를 모형 적합에 이용하기 위하여, sparse 주성분 분석에서의 elastic net 벌점함수 대신에 계층적 벌점함수 형태를 고려하였다. 또한 실제 자료의 분석을 통해 제안 방법의 성능 및 유용성을 입증하였다.

주성분 분석의 안전한 다자간 계산 (Secure Multiparty Computation of Principal Component Analysis)

  • 김상필;이상훈;길명선;문양세;원희선
    • 정보과학회 논문지
    • /
    • 제42권7호
    • /
    • pp.919-928
    • /
    • 2015
  • 최근 대용량 데이터 대상의 프라이버시 보호 데이터 마이닝(privacy-preserving data mining: PPDM)이 활발히 연구되고 있다. 본 논문에서는 민감한 데이터 집합의 상관관계를 파악하는데 널리 사용되는 주성분 분석 기반의 PPDM을 다룬다. 일반적으로 주성분 분석은 모든 데이터를 한 곳에 모아 처리해야 하므로 민감한 데이터가 서로에게 공개되고, 상당한 계산량을 요구하며, 또한 데이터를 모으는 과정에서 많은 통신 오버헤드가 발생한다. 이러한 문제를 해결하기 위하여 본 논문은 데이터를 한 곳에 모으지 않고도 주성분 분석을 안전하게 계산하는 효율적인 방법을 제안한다. 제안하는 방법은 노드들 간에 한정된 정보만을 공유하면서도 원래의 주성분 분석 결과와 동일한 결과를 얻을 수 있다. 또한 안전한 주성분 분석에 저차원 변환을 적용하여 안전한 유사 문서 검색에 사용한다. 마지막으로 다양한 실험을 통해 제안한 방법이 대용량의 다차원 데이터에서 효율적으로 동작함을 확인한다.

PCA 기법을 이용한 폐탄광 지역의 지반침하 관련 요인 추출 (Extract the main factors related to ground subsidence near abandoned underground coal mine using PCA)

  • 최종국;김기동
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2007
  • 본 연구에서는 폐탄광 지역에서 발생하는 지반침하에 영향을 주는 주요 요인들을 추출하기 위하여 다변량 통계분석 방법의 하나인 주성분분석(Principle Component Analysis : PCA)기법과 지리정보시스템 (Geographic Information System : GIS)을 이용하였다. 이를 위해 연구지역에서 수행한 지표지질조사, 정밀조사, 실내암석시험 등으로부터 취득된 자료를 데이터베이스로 구축하고, 지반침하 위험지역 분포를 공간적으로 해석할 수 있는 지질, 토지이용, 경사도, 지표로부터 지하 갱도까지의 심도, 갱도의 지표상 위치로부터의 수평거리, 지하수심도, 투수계수, RMR(Rock Mass Rating) 값을 분석대상으로 선정하였다. 각 요인들이 연구지역 전체에 걸쳐 분포하도록 GIS의 공간분석 기법의 하나인 표면분석(Surface Analysis), 버퍼링기법(Buffering) 및 내삽법(Interpolation)을 이용하여 래스터 데이터베이스로 구축하고 이로부터 추출된 자료들을 입력값으로 하는 주성분분석을 수행하였다. 주성분분석 결과 폐탄광 지역의 지반침하에 영향을 주는 주요인을 추출하는 것이 가능하였으며, 연구지역은 지질 및 지반강도 관련 요인이 침하발생의 가장 큰 요인인 것으로 분석되었다.

  • PDF

주성분 분석과 비정칙치 분해를 이용한 문서 요약 (Text Summarization using PCA and SVD)

  • 이창범;김민수;백장선;박혁로
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.725-734
    • /
    • 2003
  • 본 논문에서는 통계적 분석 기법인 주성분 분석과 비정칙치 분해를 이용한 문서 방법을 제안한다. 제안한 방법은 문서내의 주제어를 추출한 후, 추출된 주제어와 문장간의 거리가 가장 짧은 문장들을 중요 문장으로 추출하여 요약으로 제시한다. 주제어를 추출하기 위해서는 주성분 분석을 이용하였으며, 이는 문서 자체내의 빈도 정보와 단어간의 연관 정보를 이용한 것이다. 그리고, 중요 문장을 추출하기 위해 비정칙치 분해를 시행하여 문장 벡터와 주제어 벡터론 획득한 후, 두 벡터간의 유클리디언 거리를 계산하였다. 신문 기사를 대상으로 실험한 결과, 제안한 방법이 출현 빈도만을 이용한 방법과 주성분 분석만을 이용한 방법보다 성능이 우수함을 알 수 있었다.

주성분분석을 이용한 C[11]-PIB imaging 영상분석 (Principal component analysis in C[11]-PIB imaging)

  • 김남범;신귀순;안성민
    • 핵의학기술
    • /
    • 제19권1호
    • /
    • pp.12-16
    • /
    • 2015
  • 주성분분석(Principal component analysis, PCA)은 고차원 변수들 사이의 복잡한 상관성 구조를 더 낮은 차원으로 단순화하여 상관성의 구조를 쉽게 설명하기 위한 다변량분석기법으로 뇌영상 분석에서 자주 사용되는 방법이다. 주성분분석의 기본개념은 서로 직교하는 변수들의 선형결합을 통해서 원래의 뇌영상 자료가 가지고 있는 전체정보를 최대한 설명할 수 있는 서로 독립적인 새로운 변수들을 유도하는 것이다. 뇌영상분석에서 주성분분석의 효율성과 유용성을 알아보기 위해서 C[11]-PIB 영상을 이용하여 분석하였다. 대상 및 방법으로는 평균나이가 같은 9명의 정상인, 10명의 알츠하이머/경도인지장애환자들의 C[11]-PIB 영상을 이용하였다. PET-CT 장비로는 Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN)를 영상을 획득하였고 9.6 MBq/kg C[11]-PIB를 정맥주사 한 후 40분 후에 20분 동안 3D acquisition mode로 방출영상을 얻었다. Attenuation map은 X-ray CT scan을 이용하여 재구성하였다(130 kVp, 240 mA). PIB template을 만들기 위해서 정상인에서 3T MRI T1-weighted 영상을 동시에 얻었다. 주성분분석을 위한전처리과정으로서 공간정규화 및 공간편평화를 SPM8을 이용하여 실시하였고 주성분분석은 Matlab2012b를 이용하여 분석하다. 결과는 주성분분석을 통해서 서로 독립적인 주성분영상들을 얻을 수 있었다. 주성분분석을 통해서 얻어진주성분영상은 C[11]-PIB brain PET 영상의 패턴을 몇 개의 주성분으로 단순화 할 수 있었으며 주로는 neocortex를 변동 나타내는 영상, white matter의 변동을 나타내는 영상 그리고 pons등 deep brain의 변동을 나타내는 영상 등으로 단순화되었다. 결론으로는 주성분분석은 C[11]-PIB brain 영상을 단순화하여 영상의 패턴을 해석하는데 매우 유용하였다. 이러한 주성분분석은C[11]-PIB영상 분석뿐만 아니라 뇌의 포도당 대사를 측정하는 FDG-PET 또는 뇌기능영상등의 다변량분석 방법으로서 그 적용범위가 클 것으로 기대된다.

  • PDF

주성분 보유수에 따른 중요 용어 추출의 비교 (Comparison of Significant Term Extraction Based on the Number of Selected Principal Components)

  • 이창범;옥철영;박혁로
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.329-336
    • /
    • 2006
  • 문서를 구성하는 단어들은 서로 연관이 있다는 정보를 충분히 이용할 수 있는 다변량 분석 방법 중, 주성분분석(Principal Component Analysis)을 이용하여 중요 용어를 추출하고자 한다. 본 논문에서는 주성분분석의 분석 대상을 용어 사이의 공분산행렬이 아닌 상관행렬을 이용한다. 그리고, 중요 용어를 추출하기 위해서, 보유해야 할 주성분 개수와 주성분과 용어 사이의 상관계수에 대한 최적의 임계치를 찾고자 한다. 283건의 신문기사를 대상으로, 추출된 용어에 기반한 문장 추출 실험 결과, 첫 6개까지의 주성분과 상관계수 |0.4|라는 조건에서 가장 좋은 성능을 보였다.

주성분회귀와 고유값회귀에 대한 감도분석의 성질에 대한 연구 (A study on the properties of sensitivity analysis in principal component regression and latent root regression)

  • 신재경;장덕준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.321-328
    • /
    • 2009
  • 회귀분석에서 설명변수들 사이에 상관이 높으면 최소제곱추정법에서 구한 회귀계수들의 정도가 떨어진다. 다중공선성이라 불리는 이 현상은 실제 자료분석에서 심각한 문제를 야기시킨다. 이 다중공선성의 문제를 극복하기 위한 여러 가지 방법이 제안되었다. 능형회귀, 축소추정량 그리고 주성분분석에 기초한 주성분회귀와 고유값회귀등이 있다. 지난 수십 년간 많은 통계학자들은 일반적인 중 회귀에서 감도분석에 관해 연구하였으며, 주성분회귀, 고유값회귀와 로지스틱 주성분회귀에 대해서도 같은 주제로 연구하였다. 이 모든 방법에서 주성분분석은 중요한 역할을 하였다. 또한, 많은 통계학자들이 주성분분석과 관련된 다변량 방법에서 감도분석에 대해 연구를 하였다. 본 연구논문에서는 주성분회귀와 고유값회귀를 소개하고, 또한 주성분회귀와 고유값회귀에서 감도분석의 방법을 소개하고, 마지막으로 이들두방법에 대한 감도분석의 성질에 대해 논의하였다.

  • PDF