A study on the cementation for the recovery of tin with aluminium in the hydrochloric acid solution was carried out. Parameters, such as aluminium metal equivalent, pH, reaction time, reaction temperature and the concentration of chloride ions were investigated. The experimental results showed that the cementation rate of Sn(II) ions increased with increase of the addition amount of aluminium powders, temperature, pH and the concentration of chloride ions in hydrochloric acid solution. From the results, the optinum conditions for recovery of metallic tin by cementation with aluminium metal powders were proposed.
This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.
Proceedings of the Korean Institute of Surface Engineering Conference
/
2016.11a
/
pp.175-175
/
2016
Sn도금액은 강산에서는 $Sn^{2+}$, 강알칼리에서는 $Sn^{4+}$석출이 안정하다. 중성영역은 도금액에 $Sn^{2+}$침전을 방지하기 위하여 착화제가 필요하다. 기록에 남아 있는 가장 오래된 Sn도금은 1856년 Gore가 4가의 주석산염을 사용한 알칼리성용액이다. 그 후 50~60년 사이에 2가의 염화주석($SnCl_2$)과 KOH에 Cyan 등의 착화제를 첨가한 도금액이 발표되었다. 최초의 실용적인 알칼리주석용액은 1931년 Oplinger의 4가 주석산 염으로서, $CH_3COONa$를 완충제로 사용하였고, $Sn^{2+}$을 산화시키기 위하여 과산화물이나 과 붕산염을 첨가하였다. 알칼리성 Sn용액은 Natrium용액과 Kalium용액이 있지만, Kalium염이 용해성이 좋고, Sn농도를 높여 전류밀도를 높일 수 있다. 알칼리성용액은 도금속도가 산성용액의 1/2로 되고, 음극효율도 80~90% 정도 낮아, 두꺼운 피막이나 생산성을 중시하는 부품에는 적합하지 않다. 초기의 산성용액은 Sn의 정련목적으로 사용되었고, Pb정련에 사용된 Fluor규산용액에 Gelatine을 첨가하였다. Mathers는 Cresol산을 첨가하여 미량의 Cresol포화용액을 사용하여 고속으로 두껍게 석출시킬 수 있었다. 독일의 Schloetter도 다양한 방향족 술폰산으로써 반 광택피막을 실현하였다. 산성Sn도금액은 첨가제에 어떠한 유기화합물을 사용하는가는 도금장치나 석출상태로써 결정할 수 있다. Hothersall과 Bradshaw는 Cresol술폰산을 첨가하여 도금액 안정성 향상을 발견했다. Cresol술폰산은 $Sn^{2+}$의 안정제이며, Gelatine은 분산제기능을 한다. 붕 불화용액은 Sn농도를 높일 수 있고, $2{\sim}12A/dm^2$의 고 전류밀도의 도금이 가능하다. 1937년 Schloetter가 개발하여 미국의 제철회사에서 사용되었다. Sn-Ni도금은 Ni도금보다도 뛰어난 내식성이 있기 때문에 자전거, 자동차부품에 사용되고 있다. 실용도금액은 1951년 Parkinson이 발표한 HBF/HCL용액이다. $SnCl_2$산성용액에서 표준전위는 -0.136V인데 비하여, Ni이온의 표준전위는 -0.25V이다. HF용액에서는 불화물이온이 $Sn^{2+}$의 석출전위를 (-)방향으로 이동시켜서 합금석출이 가능하다. Sn-Co도금은 Cr도금의 색조에 가깝고, 장식목적으로 사용된다. Cr도금 대체용으로 사용된다. 내마모성이나 내식성은 Cr도금보다도 떨어지기 때문에 장식목적에 한정된다. 1953년 Parkinson은 Sn-Ni도금연구에서 동일한 용액조성으로부터 Co 30%를 석출시켰다. Sn-Zn도금은 방식도금으로서 자동차부품에 많이 사용되고 있다. Sn과 Zn의 표준전위는 서로 멀리 떨어져 있기 때문에 산성용액에서는 공석될 수 없다. 1980년대에 들면서, 방식Cd(Cadmium)도금의 독성 때문에 Sn-Zn도금을 재인식 하게 되었다. 1957년 Vaid 등이 No Cyan도금액을 발표했다. 그 후 러시아의 연구자가 안정한 도금액을 연구하였고, Srivastava와 Muckergee가 1976년에 종합하였다.
Solvent extraction experiments were carried out to recover and separate Ru(III) from aqueous hydrochloric acid media using TBP and Cyanex923. The efficiency of the extraction was studied under various experimental conditions, such as concentration of HCl and NaCl, concentration of extractant in the organic phase and temperature. The extraction behavior of metal impurities, such as Pt, Bi, Sn, Fe, Pb and Cu in mixed solutions was examined. From the experimental studies, it was found that the Cyanex923 resulted in higher extraction percentage of Ru than TBP. However TBP was more effective for the separation of Ru and Pt, Bi, Sn in mixed solutions than Cyanex923.
In this study, waste ITO target is dissolved into hydrochloric acid to generate a complex indium-tin chloride solution. Nano sized ITO powder with an average particle size below 30 nm are generated from these raw material solutions by spray pyrolysis process. Also, in this study, thermodynamic equations for the formation of indium-tin oxide (ITO) are established. As the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$, the proportion and size of the spherical droplet shape in which nano sized particles aggregated gradually decreased, and the surface structure gradually became densified. When the reaction temperature was $800^{\circ}C$, the average particle size of the generated powder was about 20 nm, and no significant sintering was observed. At a reaction temperature of $900^{\circ}C$, the split of the droplet was more severe than at $800^{\circ}C$, and the rate of maintenance of the initial atomized droplet shape decreased sharply. The average particle size of the powder formed was about 25 nm. The ITO particles were composed of single solid crystals, regardless of reaction temperature. XRD analysis showed that only the ITO phase was formed. Remarkably, the specific surface area decreased by about 30% as the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$.
Park, Il-Jeong;Kim, Geon-Hong;Kim, Dae-Weon;Choi, Hee-Lack;Jung, Hang-Chul
Journal of the Korean Crystal Growth and Crystal Technology
/
v.26
no.3
/
pp.95-100
/
2016
In this work, tin oxides were obtained by the liquid reduction precipitation method and hydrothermal process using $SnCl_2{\cdot}2H_2O$, $N_2H_4$, and NaOH. Tin oxide crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM). Depending on the molar ratio of the raw materials, tin oxide crystalline with the spherical and rectangular plate-like shape could be obtained, the crystal phase was SnO and $Sn_6O_4(OH)_4$. And the obtained SnO crystals by a hydrothermal reaction showed various shapes, such as, spherical, plate-like and flower-like architectures depending on the temperature conditions.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.566-566
/
2012
그래핀(Graphene)은 모든 탄소 동소체의 기본구성 요소로 2 차원 결정구조를 가지며, 양자홀 효과(quantum Hall effect), 뛰어난 열 전도도, 고 탄성, 광학적 투과성 등과 같은 탁월한 물리적 성질을 보이는 물질이다. 이러한 그래핀의 우수한 특성은 전계 효과 트랜지스터(field effect transistor), 화학/바이오 센서, 투명 전극(transparent electrode) 등의 다양한 전자소자를 개발하는 응용 가능하다. 그 중, 그래핀 투명전극의 제조는 가장 응용가능성이 높은 분야이다. 현재 투명전극 물질로는 인듐-주석 산화물(indium tin oxide; ITO)가 널리 이용되고 있으나, 인듐의 고갈로 인한 공급부족 문제 및 고 생산비용, 휘어지지 않는 취성 등의 단점을 지니고 있다. 따라서, 우수한 광학적 투과성과 전기전도성을 지닌 그래핀이 ITO의 대체 물질로서 각광받고 있다.[1-5] 본 연구에서는 그래핀의 투명전도필름의 응용을 위해 면저항을 낮추기 위한 방법으로 화학적 도핑(doping)을 이용하였다. 그래핀은 구리(copper; Cu) 호일을 촉매로 사용하여 열 화학증착법(Thermal Chemical Vapor Deposition)을 이용하여 합성하였다. 합성된 그래핀은 PMMA(Poly(methyl methacrylate)) 전사법을 이용하여 산화실리콘(SiO2) 기판에 전사 후, 염화은(AgCl)과 클로로벤젠(C6H5Cl)으로 만든 콜로이드(colloid) 용액에 디핑(dipping)하여 그래핀에 은 입자를 도핑 하였다. 그 결과, 은 입자 도핑 농도에 따라 면저항이 감소하는 양상을 보였다. 제작된 그래핀 투명전도성 필름의 투과도는 자외선-가시광선-근적외선 분광법(UV-Vis-NIR spectroscopy)를 이용하여 측정하였고, 라만 분광법(Raman spectroscopy)을 통해 그래핀 필름의 질적 우수성과 성장 균일도를 조사하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.