• Title/Summary/Keyword: 주변지반

Search Result 868, Processing Time 0.026 seconds

A study on the engineering meanings of the critical strain concept in tunnelling (터널공학에서 한계변형률 개념의 공학적 의미에 관한 연구)

  • Park, Si-Hyun;Shin, Yong-Suk;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This paper intends to develop an assesment technique for the rapid and quantitative evaluation of tunnel safety during tunnel excavation by using displacement measurements. Control criteria for the field measurements are provided at tunnel construction sites in Korea and other countries. However, it was known that the criteria were not clear and varied depending on the construction sites. In order to make a reasonable support for guidelines, critical strain concept is introduced in this study. And the engineering meanings of the critical strain concept are investigated precisely. In order to do this, at first, the engineering meanings of the original concept from the previous researchers was investigated theoretically for the evaluation of tunnel safely. Subsequently displacement data were obtained by using the commercial program, then the evaluation of tunnel safely was conducted with the view point of previous researches. Additionally, strains are determined from the feedback analyses program by inputting measured displacements that were obtained from the commercial program, then the evaluation of tunnel safety was discussed with the critical strain concept. Consequently it can be concluded that the evaluation of tunnel safety can be determined quantitatively and rapidly in the field by introducing the critical strain concept.

  • PDF

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.

The Analysis of Instantaneous $CO_2$ Uptake and Evapotranspiration of Herbaceous Plants for Artificial Roof Greening (옥상녹화용 초본식물의 순간 $CO_2$ 흡수 및 증발산량 분석)

  • Ahn, Geun-Young;Han, Seung-Won;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 2011
  • The purpose of this study is to demonstrate the positive effects of artificial ground greening on the reduction of carbon dioxide ($CO_2$) which can help improve ecological functions in cities and mitigation of climate change, through quantifying $CO_2$ uptake and evapotranspiration by the process of photosynthesis of some plants. Experiment of $CO_2$ uptake and evapotranspiration was conducted by measurement of $CO_2$ exchange rate using the infrared gas analyzer, for 7 month, growing season from May to November 2009, 2 times a month. The result was as follows; The $CO_2$ uptake quantity per $cm^2$ of Chrysanthemum zawadskii was the highest rate at $21.47{\times}10^{-6}g/cm^2/s$ and Poa pratensis was $16.20g{\times}10^{-6}g/cm^2/s$. The stronger was light of intensity, the higher were $CO_2$ uptake rate of most plants. In quantity of evapotranspiration, Poa pratensis was the highest rate at $8.75{\times}10^{-5}g/cm^2/s$ and Aquilegia buergariana was $8.66{\times}10^{-5}g/cm^2/s$. From this study, it is confirmed that artificial ground greening has capacity of absorption $CO_2$ and effects on improving urban microclimate.

Probable Volcanic Flood of the Cheonji Caldera Lake Triggered by Volcanic Eruption of Mt. Baekdusan (백두산 화산분화로 인해 천지에서 발생 가능한 화산홍수)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yoo, Soon-Young;Kim, Sang-Hyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.492-506
    • /
    • 2013
  • The historical accounts and materials about the eruption of Mt. Baekdusan as observed by the geological survey is now showing some signs of waking from a long slumber. As a response of the volcanic eruption of Mt. Baekdusan, water release may occur from the stored water in Lake Cheonjii caldera. The volcanic flood is crucial in that it has huge potential energy that can destruct all kinds of man-made structures and that its velocity can reach up to 100 km $hr^{-1}$ to cover hundreds of kilometers of downstream of Lake Cheonji. The ultimate goal of the study is to estimate the level of damage caused by the volcanic flood of Lake Cheon-Ji caldera. As a preliminary study a scenario-based numerical analysis is performed to build hydrographs as a function of time. The analysis is performed for each scenario (breach, magma uplift, combination of uplift and breach, formation of precipitation etc.) and the parameters to require a model structure is chosen on the basis of the historic records of other volcanos. This study only considers the amount of water at the rim site as a function of time for the estimation whereas the downstream routing process is not considered in this study.

Petrological Characteristics and Deterioration State of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 암석학적 특성과 풍화훼손도)

  • Yun, Seok-Bong;Kaug, Yean-Chun;Park, Sung-Mi;Yi, Jeong-Eun;Lee, Chan-Hee;Choi, Seok-Won
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.629-641
    • /
    • 2006
  • The Standing Buddha Statue in the Gwanchoksa temple consists of medium to coarse grained biotite granodiorite with dark grey color, and it has a week gneissosity along the pegmatite veins. The results of magnetic susceptibility and geochemical patterns of the host rock of Standing Buddha Statue and the basement rock suggest that both values are formed from the co-genetic magma with the same differentiation process. The CIAs of the basement rock and the Standing Buddha Statue are calculated to 51.43 and 50.86, and the WPIs are estimated 4.52 and 8.95, respectively. So the weathering potential from the host rock of Standing Buddha Statue and basement rock prove to be high. The Standing Buddha Statue is terribly damaged with physical weathering from deterioration and exfoliation, and are scattered with secondary pollutant and precipitate. Basement rock is also in danger of ground collapse because of irregularly developed discontinuity system. Most surface of Standing Buddha Statue is seriously discolored into yellowish brown and dark gray, or black precipitates are also formed. Moreover, it is heavily covered with crustose lichen, fungi and algae, or moss are also found. In order to control the influential factors with the complex deterioration of Standing Buddha Statue, it is needed to rearrange a site environments, and conservation scientific management is required to protect it from covering lichens, exfoliations and fractures.

Behavior Interpretation and Secondary Degradation of the Standing Sculptured Buddha at the Yongamsa Temple, Ogcheon, Korea (옥천 용암사 마애불의 거동특성 해석과 이차적 훼손)

  • Lee, Chan Hee;Chung, Youn Sam;Kim, Ji Young;Yi, Jeong Eun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.83-94
    • /
    • 2005
  • Host rock or the standing sculptured Buddha in the Yongamsa temple is macular porphyritic biotite granite, which has gone through mechanical and chemical weathering. The rock around the Buddha statue is busily scattered with steep inclinations that are almost vertically discontinuous planes with the strikes of $N8^{\circ}E$. Especially the development of the joints that cross the major joints causes the structural instability of the rock. The rock of the Buddha statue is separated into several rock blocks because of many different discontinuity. Thus it is estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the differential pressure is imposed on the body of the Buddha in the host rock, it is urgent to give a reinforce treatment of geotechnical engineering for the safe of its structural stability. Very contact area of joints have turned into soil, which promotes the growth of weeds and plant roots, then aggravates the mechanical weathering of the rock. Thus conservational treatments should also be considered to get rid of secondary contaminants and vegetation along the discontinuities and to prevent further damages.

  • PDF

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF