• Title/Summary/Keyword: 주변지반

Search Result 866, Processing Time 0.03 seconds

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

Investigation of Soil and Rice Crop Manganese Contamination in Agricultural Areas near a Golf Courses (골프장 인근 농업지역의 토양 및 벼 작물 망간 오염 평가)

  • Junyong Heo;Taeyong Kim;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.153-153
    • /
    • 2023
  • 골프장 건축 시 하부지반 구축을 위해 사용하는 잔석의 산화로 인해 중금속 용출이 발생할 수 있다. 용출된 중금속으로 인근 농업지역이 오염될 경우 인간의 식생활에 직접적인 영향을 미쳐 인체건강에 악영향을 끼칠 수 있다. 특히, 망간의 경우 식품을 통해 과다섭취할 경우 정신착란, 운동실조 등 다양한 신경학적 문제를 발생시키기 때문에 망간 오염에 대한 조사 및 관리는 필수적이다. 따라서, 본 연구는 최근 골프장이 건설된 부산시 일광 회룡리 일대 농업지역에서 망간 오염 평가를 위해 지표수, 퇴적물, 벼 작물을 채취하여 망간 농도 분석을 수행하였다. 골프장 유출조부터 시작되는 관개수로에서 지표수와 퇴적물 시료를 약 20 m 간격으로 채취하였으며, 관개수로의 구조에 따라 논을 4개의 구역(Area 1 - 4)으로 구분하여 논 토양과 벼 작물을 채취하였다. 벼 작물의 경우 뿌리, 줄기, 곡물 부분으로 나누어 채취하였으며, 퇴적물과 논 토양은 시료 내 존재하는 망간의 형태를 확인하기 위해 연속추출법을 통해 분석하였다. 분석 결과 지표수의 망간 농도는 골프장 유출조에서 하류로 갈수록 감소하는 경향을 보였으며, 하류에서의 망간농도는 상류에 비해 최대 88% 감소하였다. 퇴적물의 망간 농도는 논으로 연결되는 지점에서 20,000 mg/kg 이상의 높은 농도를 보였으며, 농업이 진행 중인 3, 5, 7월은 최대 약 25,000 mg/kg의 농도를 보였으나, 농업이 끝난 9월에는 최대 약 3,500 mg/kg으로 상대적으로 낮은 농도를 보였다. 논 토양의 망간 농도는 관개수로와 첫 번째로 연결되는 Area 1에서 1,600 mg/kg으로 측정되었으며, 이는 EPA에서 권고한 논 토양 망간 기준 1,000 mg/kg을 초과하는 농도로 확인되었다. 또한, 식물이 사용할 수 없는Residual 형태의 망간 농도는 변화가 없었으나, 식물이 사용 가능한 Acid soluble, Reducible, Oxidizable 형태의 망간 농도는 추수기 이후 80% 이상 감소하였다. 벼 작물의 곡물 망간 농도는100 - 200 mg/kg으로 USDA에서 발표한 쌀 곡물 망간 농도의 평균인 5 mg/kg보다 약 20배 이상 높게 검출되었다. 본 연구 결과를 통해 골프장 유출조로부터 발생하는 망간오염을 식별하고 주변 농업지역에 미치는 영향을 확인할 수 있었으며, 추후 골프장 운영으로 인한 환경오염에 대한 관리가 필요할 것으로 생각된다.

  • PDF

Analysis of influence factors on the construction of the check dam to reduce damage caused by debris flow (토석류 피해 저감을 위한 사방댐 설계 모의분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Ko, Heemin;Ku, Hyeonseung;Yu, Seungheon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.92-92
    • /
    • 2022
  • 산 사면의 지반이 붕괴되어 흙, 모래, 자갈 그리고 물 등이 혼합하여 유동하는 토석류는 예측과 대비가 어려운 자연재해 중 하나 이다. 특히, 강우로 인해 발생하는 토석류의 경우 매우 빠르게 유동하기 때문에 피해 예측이 제한적이다. 이러한 토석류가 도심지역 또는 마을주변에서 발생할 경우 많은 인명 및 재산 피해가 발생한다. 따라서 토석류의 유동을 최소화시키기 위해선 1차적으로 수치모형을 통한 전반적인 유동 및 피해 규모 예측이 이루어져야 하며, 이러한 분석을 바탕으로 사방댐과 같은 구조물의 효율적인 설계가 이루어져야 한다. 이에 수치모형을 통해 토석류의 유동을 분석하고자 하는 많은 연구가 진행된 바 있으며, 사방댐 설계 분석 또한 수치모형과 실험을 통해 연구된 바 있다. 선행연구들에 따르면, 1) 발생부로부터의 거리, 2) 토석류 에너지의 감소, 3) 침식-연행 작용, 4) 사방댐의 용량 등이 효율적인 사방댐 설계에 영향을 미친다고 분석된 바 있다. 하지만 위의 항목들에 대한 종합적인 비교분석은 미비한 실정이다. 따라서 본 연구에선 위에서 제시한 4가지의 항목들을 바탕으로 사방댐 설계에 중요한 요소를 평가하고 산정하고자 한다. 토석류의 유동과 사방댐을 모의분석하기 위해 Deb2D 수치모형을 활용하였으며, Voellmy 유변학적 모형과 침식-연행-퇴적 작용을 분석할 수 있는 알고리즘을 사용하여 토석류의 유동을 현실에 가깝게 모의하였다. 2011년 서울 우면산에서 발생한 산사태 유역들 중에서 래미안 아파트 유역과2019년 강원도 갈남리에서 발생한 산사태를 대상지구로 선정하였다. 연구 결과에 따르면 4가지 요소들 중에서 사방댐의 용량이 효율적인 사방댐 설계에 가장 주요한 요인으로 분석되었다.

  • PDF

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Considerations on ground preparation for the Gimhae Bonghwang-dong Ruins (김해 봉황동 유적 대지조성에 대한 소고(小考))

  • YUN Sunkyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.24-36
    • /
    • 2022
  • The Bonghwang-dong ruins in Gimhae, the central area of Geumgwan Gaya, is presumed to be the site of the royal palace, and excavations have been in progress at the Gaya National Cultural Heritage Research Institute. According to a research conducted by lowering the level to the base layer on the north side of the site, mostly shell layers composed of oysters were confirmed, and soil composed of different material was alternately filled in to form a site construction. In other words, it can be seen that there was work at the site of the Bonghwang-dong ruins that required large-scale labor, such as building ramparts and embankments. There is stratigraphic confusion such as showing different age values in the same shell layer through a chronological analysis of organic matter and charcoal in the sedimentary layer, and deriving a result value in the upper layer ahead of the lower layer. In addition, open-sea diatoms are observed not only in the sedimentary layers, but also the pits. Therefore, it is judged that the soil constituting the ruins was brought from the outside. The Bonghwang-dong ruins are located inside the commonly called Bonghwang earthen ramparts, where many excavation organizations conducted research within the estimated range of the earthen fortifications. As a result, it was found that it was similar to the sedimentary layers of the ruins of the Three Kingdoms Period, which were investigated along with the ruins of Bonghwang-dong. Through this, the surrounding ruins, including those of Bonghwang-dong, were located close to paleo-Gimhae Bay, so it is believed that the soil brought from the surroundings was used to reinforce the ground. As a result of the excavation research on the Bonghwang-dong ruins conducted so far, it was found by sedimentary layer analysis and soil experiments that the ruins were created on stable land. Relics excavated in the sediments of the ruins and carbon dating data show that Bonghwang-dong carried out large-scale civil construction work in the 4th century to build the site, which clearly shows the status of Geumgwan Gaya.

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

A study on the engineering meanings of the critical strain concept in tunnelling (터널공학에서 한계변형률 개념의 공학적 의미에 관한 연구)

  • Park, Si-Hyun;Shin, Yong-Suk;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This paper intends to develop an assesment technique for the rapid and quantitative evaluation of tunnel safety during tunnel excavation by using displacement measurements. Control criteria for the field measurements are provided at tunnel construction sites in Korea and other countries. However, it was known that the criteria were not clear and varied depending on the construction sites. In order to make a reasonable support for guidelines, critical strain concept is introduced in this study. And the engineering meanings of the critical strain concept are investigated precisely. In order to do this, at first, the engineering meanings of the original concept from the previous researchers was investigated theoretically for the evaluation of tunnel safely. Subsequently displacement data were obtained by using the commercial program, then the evaluation of tunnel safely was conducted with the view point of previous researches. Additionally, strains are determined from the feedback analyses program by inputting measured displacements that were obtained from the commercial program, then the evaluation of tunnel safety was discussed with the critical strain concept. Consequently it can be concluded that the evaluation of tunnel safety can be determined quantitatively and rapidly in the field by introducing the critical strain concept.

  • PDF

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.