• Title/Summary/Keyword: 주변지반

Search Result 866, Processing Time 0.027 seconds

Stability Analysis of Soil Nailed Slope by Discrete Element Method (개별요소법을 이용한 지반네일에 의해 보강된 굴착사면의 안정해석)

  • 김주용;김준석
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.49-62
    • /
    • 1995
  • Soil nailing has been widely rosed during the last two decades to stabilize sheep excavated slopes in several countries. In thin study, the discrete element method has been applied to evaluate the stability of the reiuorced slope. This method is capable of not only estimat ins tensile and sheer stresses mobilized in nails but also providing individual safety factors of soil and nails, It has been assumed that the nailed slope be comprised of slices connected with elastoplastic twinkler springs. A reasonable mechanism is applied for representing the behavior between nails and adj scent soils. Taking into account for the bequence of construction the developed method well predicts the measured tensile forces developed in nails so that it is possible to appropriately evaluate the overall safety factor.

  • PDF

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Behavior of the Ground in Obliquely Crossed area Due to Tunnel Excavation Under the Existing Tunnel (기존터널에 근접하여 경사로 교차되는 하부터널굴착에 따른 교차부지반의 거동)

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel crossed to that was studied. Model test was performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density and test with the crossed angle of $56^{\circ}$ (obliquely) were performed. The numerical analysis was performed on equal condition with model test. Results of the study by model test and numerical analysis show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Model test shows that upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

Transfer Length of the Soil Nail Induced by the Shear Deformation (전단변형에 따른 쏘일네일의 전이길이)

  • You, Min Ku;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.61-73
    • /
    • 2018
  • When the shear deformation occurs on the slope reinforced with soil nail, a passive earth pressure is induced on the ground around the soil nail and the increase of shear deformation causes the earth pressure variation of the ground and the deformation and member force change of the soil nail. In this study, the shear behavior of the soil nail was analyzed experimentally by inducing the shear deformation in the vertical direction of the soil nail using a large-scale direct shear test equipment and it was verified through numerical analysis. The shear test was performed on the bonded length (6D, 8D, 10D and 12D) of the soil nail separated from the shear surface. As a result, it was observed that the continuous increase of the shear deformation caused the damage of the grout and the effect according to the bonded length was analyzed. Through the model test and the numerical analysis, it was confirmed that the transfer length of the soil nail was 0.2~0.22m, which is larger than 0.1m suggested in the previous study, and the shear zone was in the range of 0.6m from the shear surface.

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

Evaluation of pre-developed seismic fragility models of bored tunnels (기 개발된 굴착식 터널의 지진취약도 모델 적용성 평가)

  • Seunghoon Yang;Dongyoup Kwak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.187-200
    • /
    • 2023
  • This study analyzed the seismic fragility of bored tunnels based on their surrounding conditions and suggested a representative seismic fragility model. By analyzing the existed seismic fragility models developed for bored tunnels, we developed weighted combination models for each surrounding conditions, such as ground conditions and depth of the tunnel. The seismic fragility curves use the peak ground acceleration (PGA) as a parameter. When the PGA was 0.3 g, the probability of damage exceeding minor or slight damage was 20% for depth of 50 m or less, 10% for depth between 50 m and 100 m, and 3% for depth of 100 m or more. It was also found that the probability of damage was higher for the same PGA and depth when the surrounding ground was rock rather than soil. The probability of damage decreases as the depth increase. This study is expected to be used for developing a comprehensive seismic fragility function for tunnels in the future.

A Study on Simulation of Cavity and Relaxation Zone Using Finite Element Method (유한요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • You, Seung-Kyong;Kim, Joo-Bong;Han, Jung-Geun;Hong, Gi-Gwon;Yun, Jung-Mann;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • In order to prevent the ground subsidence accidents caused by the occurrence of underground cavity, it is necessary to evaluate the mechanical characteristics in the relaxation zone of the underground cavity. Also, the relaxation zone including underground cavity be appropriately reinforced. This paper described analysis results based on finite element method that was conducted to analyze the mechanism for occurrence of the relaxation zone around the underground cavity. The finite element analysis applied in forced displacement was carried out to simulate the underground cavity and relaxation zone, and then there were compared with previous research results. The analysis results showed that the void distribution of soil around the underground cavity has figured out. As a result, the area of the relaxation zone could be quantitatively presented by reduction characteristics of the shear stress.

A Study on the Behaviour of a Single Pile to Tunnelling Including Soil Slip (Soil slip을 고려한 터널굴착에 의한 단독말뚝의 거동연구)

  • Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.59-67
    • /
    • 2009
  • Three-dimensional (3D) numerical analyses have been conducted to study the behaviour of a single pile to tunnelling. The numerical analysis has included soil slip at the pile-soil interface. In the numerical analyses the interaction between the tunnel and the pile constructed in weathered soil and rock has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement at the pile-soil interface during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilised near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

  • PDF

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

The Characteristics of Stress and Displacement due to the Diagonal Parallel Tunnel Excavation (대각선 병설터널 굴착에 따른 응력과 변위특성)

  • Kim, Youngsu;Pack, Songja
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.39-49
    • /
    • 2011
  • In this paper it was focused on the characteristics of displacement and stress due to the construction of diagonal twin tunnel. In this research, the characteristics have been analyzed with the presumption that the tunnel's diameter (D) is 13m and the ground was formed by weathered rock. In analysis, the width of pillar is 2.0D, 2.5D, 3.0D, the height of soil cover is 3D, 4D, 5D, and the installation angle of diagonal twin tunnel has been changed into $15^{\circ}$, $30^{\circ}$, $45^{\circ}$. And the program used in this analysis is FLAC which is widely used in solution problems of ground engineering in order to gain and analyze occurring shotcrete and rockbolt stress and nearby ground displacement according to pillar width, the height of soil cover and installation angle of diagonal twin tunnel. As a result, in the weathered rock grounds, when the width of pillar is more than 2.0D, the height of soil cover is over 5.0D, and the installation angle of diagonal twin tunnel is lower, they lessen effects on the ground and favorable on the stability of tunnel.