• Title/Summary/Keyword: 주동토압

Search Result 58, Processing Time 0.02 seconds

Nonlinearly Distributed Active Earth Pressure on a Translating Rigid Retaining Wall : II. Application (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : II. 적용성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.191-199
    • /
    • 2003
  • It is known that the distribution of the active earth pressure against a rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the farmer paper, a new formulation was proposed for the nonlinear distribution of active earth pressure on a translating rigid retaining wall considering arching effects. In this paper, parametric study is performed to investigate the effect of ${\phi}, {\delta}$ and wall height on the magnitude and distribution of active earth pressure calculated from the proposed equations. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the lateral active earth force on the translating wall. Simplified design charts are also proposed for the modified active earth pressure coefficient and fur the height of application of the lateral active force in order to facilitate the use of the proposed equation.

The 3-Dimensional Active Earth Pressure Depending on the Size of Rectangular Wall (직사각형 벽체의 크기에 따른 3차원 주동토압)

  • Park, Byung-Suk;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.69-78
    • /
    • 2015
  • If an active displacement occurs on a wall with finite size, the ground behind the wall forms shapes of 3-dimensional wedges and 3-dimensional active earth pressure are applied on the wall. In the previous studies, shapes of 3-dimensional wedges were measured and the resultant of 3-dimensional active earth pressure has been calculated. In this study, the magnitude and the distribution of 3-dimensional active earth pressure depending on the size of a rectangular wall, which was defined by the aspect ratio (h/w), that is, the ratio between the height and the width of wall, were measured and compared with previous 3-dimensional models. The result shows that, the horizontal displacement (S) of the wall is approx 0.12% of the height of wall (h). The resultant 3-dimensional active earth pressure is similar to that of Karstedt (1982). The distributions of earth pressures on the wall are parabolic shape. The peak earth pressure was measured at the 0.5~0.55 depth from the ground surface. The reduction factor of 3-dimensional active earth pressure against the 2-dimensional earth pressure (${\alpha}$) depending the aspect ratio (h/w) is presented by the diagram.

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

Active Earth Pressure against Caisson Backfilled with Crushed Rock and Sand (I) : Formulation (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (I) : 정식화)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • Coulomb's theory has traditionally been used for the estimation of active earth pressure acting on rigid walls. However, many experimental data show that active earth pressures on rough, rigid walls are nonlinearly distributed. This is due to the arching effects produced by friction between the wall and backfill materials when the wall translates away from the backfill. Although there are analyses that take arching into consideration f3r a horizontal backfill surface and a vertical rigid wall, these analyses were derived for homogeneous backfill. Therefore, it is not possible to use these analyses for a caisson backfilled with crushed rock and sand, a common type of rigid wall for harbor structures. In this study, a new formulation for calculation of the nonlinear active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed considering both internal friction angles and unit weights of the crushed rock and sand.

Load Transfer to the Adjacent Ground Induced by the 3-Dimensional Active Displacement (3차원 주동변위에 따른 인접지반으로의 하중전이)

  • Park, Byung Suk;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.49-60
    • /
    • 2015
  • Since previous studies on the 3-dimensional earth pressure have been conducted focusing on the stability of wall, it is very difficult to find a study on the load transfer to the adjacent ground induced by the 3-dimensional active displacement. Therefore, in this study, we tried to find out the load transfer to the adjacent ground induced by the 3-dimensional active displacement depending on the size of rectangular wall which was defined by the aspect ratio, that is, the ratio of the height to the width of the wall. 3-dimensional model tests were performed in order to measure the distribution and the magnitude of load transfer to surrounding grounds. The transferred load was 17.9~30.6% less than the difference between the 3-dimensional active earth pressure and earth pressure at rest. The transferred load of both vertical and horizontal was maximum at the boundary of the active wall. The load transfer range depended on the normalized height of the active wall, and it was 0.67~1.29w in horizontal direction and 1.0~3.0h in vertical direction. The transferred load in horizontal was maximum at the height of the wall. As the aspect ratio increases the location of the maximum transferred load points becomes higher. The ratio of the transferred load area of 56~79% at 0.25w in horizontal direction and 50~58% at 1.0~1.5 in vertical direction. Diagrams showing the distribution and the magnitude of the transferred load depending on the aspect ratio were suggested.

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF

Stability of Railway Bridge Abutment with Earth Pressure and Internal Friction Angle of Backfill (내부마찰각과 토압 산정방법에 따른 철도교대의 안정성 비교 연구)

  • Choi, Chan Yong;Kim, Hun Ki;Yang, Sang Beom;Kim, Byung Il
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.765-776
    • /
    • 2016
  • In this study, a standard section of a railway bridge abutment wall was designed to satisfy the external stability condition in accordance with the design criteria; this design was used to compare and analyze the active earth pressure and to calculate various types of earth pressure acting on the virtual back (wall, plane) according to the frictional angle of the backfill materials. Also, the external stability, member force and construction cost were analyzed according to the frictional angle of the backfill materials using various theories of earth pressure such as Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge. As for the results, it was found that lateral earth pressure at the virtual back plane was higher than at the virtual back wall, and that these values decreased with the increase of the frictional angle of the backfill materials. The increasing of the frictional angle of the backfill materials decreased the active earth pressure (according to Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge results), and the member force as well as the construction cost were reduced.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.181-191
    • /
    • 2004
  • For a rigid retaining wall with rough face, the magnitude and distribution of active earth pressure on the wall are affected by the shape of failure surface and arching effect developed in the backfill as well as internal friction angle of the backfill and wall friction angle. Therefore, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

Active Eanh Pressure Against Caisson Backfilled with Crushed Rock and Sand (II) : Verification and Application (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (II) : 검증과 적용)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • In the companion paper (Paik 2006), a new formulation for calculating the nonlinearly distributed active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed, and it takes into account arching effects as well as difference in internal friction angles and unit weights between sand and crushed rock. In this study, in order to partially check the accuracy of the proposed equation, the results of the proposed equation are compared with the equation proposed by Paik (2003a) for caissons with rough surface and homogeneous backfill, and are compared with results of Rankine's theory for caissons with smooth surface and homogeneous backfill. In addition, a parametric study is performed to investigate the effect of $phi_{r}$, $phi_{s}$, $\delta_{r}$, $\gamma_{r}$, $\gamma_{s}$ and $\beta$ on the magnitude of active earth pressure acting on the caisson, and construction methods for minimizing active earth pressure on the caisson are also provided based on the results of a parametric study.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.