• Title/Summary/Keyword: 주기구조

Search Result 2,411, Processing Time 0.033 seconds

Calculation of the Characteristic Impedance of Transmission Lines with Periodic Structures (주기구조가 결합된 전송선로의 특성 임피던스 계산)

  • Lim, Jong-Sik;Lee, Jae-Hoon;Lee, Jun;Han, Sang-Min;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2541-2548
    • /
    • 2010
  • This paper describes the calculation for characteristic impedance of transmission line with periodic structures such as defected ground structure (DGS) and photonic bandgap (PBG). The previous method which uses the ${\lambda}$/4 transmission line model is reviewed and its disadvantage that the calculated characteristic impedance is strongly dependent on the frequency is discussed. The characteristic impedance of transmission lines with periodic structures are calculated using the ${\lambda}$/4 transmission line model and analytic method. The calculated characteristic impedance by the latter method is an almost constant value while that from the first method depends on the frequency strongly. In addition, the characteristic impedance of the transmission line with PBG is calculated and proposed, while it has been rarely studied ever. S-parameters are obtained from the measurement using the fabricated sample as well as simulation, and used for calculating the characteristic impedances and comparison. The characteristic impedances calculated from the measured S-parameters agree well with the simulated results. It is well described that the analytic method to calculate the characteristic impedance of transmission lines on uniform dielectric structures can be applied successfully to the transmission lines with periodic structures such as DGS and PBG.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (I) Development of Lifetime Seismic Reliability Analysis S/W (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (I) 생애주기 지진신뢰성해석 프로그램 개발)

  • Lee, Kwang-Min;Choi, Eun-Soo;Cho, Hyo-Nam;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.965-976
    • /
    • 2006
  • A realistic lifetime seismic-reliability based approach is unavoidable to perform Life-Cycle Cost (LCC)-effective optimum design, maintenance, and retrofitting of structures against seismic risk. So far, though a number of researchers have proposed the LCC-based seismic design and retrofitting methodologies, most researchers have only focused on the methodological point. Accordingly, in most works, they have not been quantitatively considered critical factors such as the effects of seismic retrofit, maintenance, and environmental stressors on lifetime seismic reliability assessment of deteriorating structures. Thus, in this study, a systemic lifetime seismic reliability analysis methodology is proposed and a program HPYER-DRAIN2DX-DS is developed to perform the desired lifetime seismic reliability analysis. To demonstrate the applicability of the program, it is applied to an example bridge with or without seismic retrofit and maintenance strategies. From the numerical investigation, it may be positively stated that HYPER-DRAIN2DX-DS can be utilized as a useful numerical tool for LCC-effective optimum seismic design, maintenance, and retrofitting of bridges.

Long-Period Fiber Gratings Based on Periodically Surface-Etched Structure Imprinted by Using a Photoresist Polymer (폴리머 장주기 패턴을 이용한 표면 식각된 격자 구조 기반의 장주기 광섬유 격자)

  • Park, Sang-Oh;Kwon, Oh-Jang;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • A new fabrication technique of long-period fiber gratings with periodically surface-etched structures is proposed. Transmission characteristics of the periodically surface-etched long-period fiber gratings are improved by changing strain because of variation of coupling strength between the core and the cladding modes. The sensitivities of the periodically surface-etched long-period fiber gratings to strain, torsion, and ambient refractive index were measured. The strain and the torsion sensitivities were measured to be $-0.033\;dB/\mu\varepsilon$ and -1.30 nm m/rad, respectively. The ambient index sensitivity was measured to be -31.33 nm/RIU from a range from 1.33 to 1.42.

A Main Memory-resident Multi-dimensional Index Structure Employing Partial-key and Compression Schemes (부분키 기법과 압축 기법을 혼용한 주기억장치 상주형 다차원 색인 구조)

  • 심정민;민영수;송석일;유재수
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.384-394
    • /
    • 2004
  • Recently, to relieve the performance degradation caused by the bottleneck between CPU and main memory, cache conscious multi-dimensional index structures have been proposed. The ultimate goal of them is to reduce the space for entries so as to widen index trees and minimize the number of cache misses. The existing index structures can be classified into two approaches according to their entry reduction methods. One approach is to compress MBR keys by quantizing coordinate values to the fixed number of bits. The other approach is to store only the sides of minimum bounding regions (MBRs) that are different from their parents partially. In this paper, we propose a new index structure that exploits the properties of the both techniques. Then, we investigate the existing multi-dimensional index structures for main memory database system through experiments under the various work loads. We perform various experiments to show that our approach outperforms others.

Evaluation Using Dynamic Characteristic of Steel Structures under Periodical Impact Loads (주기적 충격하중을 받는 강 구조물의 구조건전성 평가)

  • Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Lee, Kang Min;Yoo, Kyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.120-128
    • /
    • 2011
  • Recently, safety diagnosis of the existing structures has been emerged as important issue. In particular, systematical and precise safety diagnostics for steel structures for power substation, have been required. Steel structures for power substation are under the periodical impact loads from operations of gas insulated switchgear. These loading condition accelerates damage and aging of structure. The objective of this research is to evaluate damage of structure under periodical impact loads. To evaluate the integrity of structures as organizing mathematical models including the dynamic characteristics of structures, Frequency Domain Decomposition method was choiced and an algorism was proposed. For verifying this methods and algorism, a mathematical model is composed of the development of a variety of reverse analysis and a signal processing technology reflecting physical damage of structures. A series of analysis and test results indicatge that proposed method has a confidence for applying a filed test. Therefore, it is expected to be able to take advantage of system identification to detect damage for the maintenance and management of steel structures under periodical impact loads such as power substation.

Diffraction Properties from Periodic Slot Array in the Upper Wall of Parallel Plate Waveguide (평행평판 도파관의 윗면에 위치한 주기적인 슬롯 배열에 의한 전자파의 회절특성)

  • Park Jin-Taek;Hong Jae-Pyo;Ko Ji-Whan;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.311-318
    • /
    • 2005
  • Periodically perforated slot structure in the upper wall of the parallel plate waveguide is analyzed with main interest focusing on the diffraction Properties. The Periodic slot array is of infinite extent in one direction and of finite extent in the other direction. Various numerical results for reflection from the slotted section and transmission beyond the slotted section, and the radiation through the slotted section into the upper half space are presented with the height of feeding parallel plate waveguide, single slot size, and the periodicity between slots as parameters. This study is thought to be helpful to the design of the ventilation hole in the TFT-LCD and PDP.

Fundamental Period Formulas for Concrete Shear Wall Buildings (철근 콘크리트 전단벽 구조물의 고유주기)

  • Kang, Sung-Hun;Hong, Sung-Gul;Park, Hong-Gun;Chung, Lan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • A new formula is proposed for the fundamental period of high-rise residential concrete shear-wall (SW) buildings. This formula, developed on the basis of dynamics with the recorded fundamental period during the recent earthquakes, can consider the wall stiffness with respect to any direction. To verify the proposed formula, the fundamental period of 10 sample buildings, measured during construction, is compared with the predicted fundamental period. Furthermore, the empirical formulas presented in the building codes KBC 2009 and ASCE 7-10, are also compared with the proposed formula to show a rationality of the proposed formula. The comparison results show that the proposed formula not only can rationally consider the characteristics of each shear-wall, but that it also accurately predicts the fundamental period of the buildings.

Development of Axially Periodic Transient Storage Zone Model for the Solute Mixing in Natural Streams and Rivers with Various Bottom Boundaries (하상변화가 있는 자연하천에서의 오염물질 거동해석을 위한 주기적저장대모형 개발)

  • Cheeong, Tae Sung;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.623-631
    • /
    • 2006
  • A new model, the periodic transient storage zone model, is developed to describe solute transport mixing in natural streams and rivers with various bottom boundaries. To assess the effects of storage zones structure on transient storage exchange, we analyze data from salt and dye injection experiments in a recirculating laboratory flume with four spatially periodic pool-riffle sequences characteristic of natural river systems under low flow conditions. Dye injections show that solute transport mixing controlled by surface shapes of both the bed and the side in channels. As no existing transient storage model could represent these effects, we developed a new axially periodic transient storage zone model that better represent the effects of channel characteristics in natural river systems. The new model is also fitted to data from salt tracer injection experiments in four reaches of the upper Sabin River, Texas, USA. The proposed model is in good agreement with the field experimental data.

A Study of Highly Miniaturized On-Chip Wilkinson Power Divider Employing Periodic Strip Structure for Application to Silicon RFIC (실리콘 RFIC상에 주기적 스트립 구조를 이용한 초소형 온칩용 윌킨슨 전력분배기 개발에 관한 연구)

  • Ju, Jeong-Gab;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.540-546
    • /
    • 2010
  • In this study, using a coplanar waveguide employing Periodic Strip Structure (PSS), highly miniaturized on-chip wilkinson power divider was realized on Si radio frequency integrated circuit (RFIC). The wilkinson power divider exhibited good RF performances from 25 to 50 GHz, and its size was $0.44{\times}0.1mm^2$, which is 4.8 % of conventional one. We also investigated the RF performances of various structures employing PSS.

광대역 및 전방향 높은 투과도를 갖는 사파이어 나노구조 제작 및 광학적 특성연구

  • Kim, Myeong-Seop;Im, Jeong-U;Go, Yeong-Hwan;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.338-338
    • /
    • 2012
  • 사파이어 ($Al_2O_3$)는 높은 밴드갭 에너지 (~19.5 eV)를 가진 물질로서 우수한 내마모성, 강도, 전기 절연성 및 안정한 화학적 특성을 갖고 발광다이오드 기판, 보석재료 등 각종 산업 및 기술적 분야에서 널리 사용되고 있다. 특히, 플립칩 발광다이오드 구조의 경우 광추출효율을 향상시키기 위해 높은 투과도를 갖는 사파이어 기판이 요구되어 왔으며, 지금까지 건식/습식식각방법을 이용한 사파이어 표면에 마이크로 크기의 심한 거칠기 또는 요철이 형성된 나노크기의 격자구조를 형성시키는 연구가 진행되어 오고 있다. 그 중, 나노 크기의 격자구조는 공기에서 반도체 기판까지 선형적인 유효굴절률 분포를 갖기 때문에 표면에서 생기는 Fresnel 반사 손실을 줄일 수 있다. 이러한 구조를 형성하기 위해서는 식각 마스크가 필요한데, 형성 방법으로 레이저 간섭 리소그래피, 전자빔 리소그래피, 나노임프린트 리소그래피 등이 있으나, 비싼 가격과 복잡한 공정 절차 등의 단점을 지니고 있다. 따라서 본 연구에서는 식각 마스크 패턴을 위해, 보다 저렴하고 간단한 실리카 나노구 및 열적응집 금 나노 입자를 이용하였다. 양면 폴리싱 c-plane 사파이어 기판을 사용하였고, 단일 층의 주기적인 실리카 나노구를 기판 표면에 스핀코팅에 의해 도포한 후 유도결합플라즈마 식각 장비를 이용하여 식각하여 주기적인 패턴을 갖는 렌즈모양의 격자구조를 형성하였다. 그리고 주기적으로 형성된 격자 위에 열 증착기를 이용하여 금 박막을 증착한 후 급속열적어닐닝(rapid thermal annealing)을 이용하여 열처리함으로써 비주기적인 금 나노입자를 형성시켰다. 형성된 금 나노패턴을 이용하여 동일한 조건으로 식각함으로써 광대역 및 전방향성 높은 투과도를 갖는 원뿔 모양의 사파이어 나노구조를 제작하였다. 제작된 샘플의 패턴 및 식각 형상은 전자현미경을 사용하여 관찰하였으며, UV-vis-NIR 분광광도계 (spectrophotometer)를 사용하여 투과율을 측정하였다. 렌즈 모양 표면 위에 원뿔모양의 나노구조를 갖는 사파이어 기판은 일반적인 사파이어 기판보다 향상된 투과율 특성을 보였다.

  • PDF