• Title/Summary/Keyword: 주강성

Search Result 1,106, Processing Time 0.028 seconds

High Performance Count-current Flow in Packed Tower Design (고효율 역류흐름 충전탑에서 물질전달에 관한 연구)

  • Kang, Sung Jin;Park, Chi Kyun;Kil, Sung Jae;Lee, Kyong Hak;Lee, Man Sig
    • Applied Chemistry
    • /
    • v.17 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • High performance count-current flow in packedtower design. Column that packed with Montz packing regular and dumped packing with Pall Ring, Hiflow Ring and Hackette have been represented high performance in vaccum rectification and absorption. The new correlating of these relationship based on the numerous results has been developed for process calculation and design. The results of laboratory or experimental pilot plant can be adopted directly for scale-up.

Evaluation of Productivity Improvement in Digital Technology Introduction by Analysis of Construction Supervision Checklist (시공감리 체크리스트 분석을 통한 디지털 기술 도입 시 생산성 향상 평가)

  • Kim, Da-Hee;Park, Chan-Hyuk;Yoo, Wi-Sung;Jung, Wang-Young;Kang, Seong-Mi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.229-230
    • /
    • 2023
  • The introduction of digital technology for supervision work can be explained as an important key to improving construction productivity. In this study, effective digital technologies at construction supervision work is analyzed in terms of productivity improvement. And through questionnaires, effective technology introduction strategies is devised.

  • PDF

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna (전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계)

  • Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material Complex (단열성능향상 재료를 혼합 사용한 콘크리트의 열전도 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Sung-Hyuk;Kim, Se-Hwan;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.40-41
    • /
    • 2013
  • The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete compising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using micro form admixture and calcined diatomite powedr and lightweight aggregate.

  • PDF

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Behavior of RC Structures under Fire (화재와 철근콘크리트 구조부재의 구조거동)

  • 홍성걸
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2002
  • 산업화에 따른 인구 집중현상의 결과 도심지의 밀집형 고층주거형 구조물에 발생할 수 있는 화재는 인명과 경제적인 손실을 가져올 수 있으므로 이에 대한 체계적인 방재 시스템을 요구한다. 구조공학적인 측면에서 내화 특성은 화재에 대한 최후의 방어선으로서 구조적인 안정성을 유지하여야 한다. 화재로 인한 구조부재의 파괴는 구조체의 강성 및 강도저하가 주요 원인으로 근처 다른 구조부재의 파괴로 발전하면서 종국적으로 전체 구조물이 붕괴할 수도 있다.(중략)