• Title/Summary/Keyword: 주가 경향 예측

Search Result 488, Processing Time 0.631 seconds

Personalized Recommendation based on Item Dependency Map (Item Dependency Map을 기반으로 한 개인화된 추천기법)

  • Youm, Sun-Hee;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2789-2791
    • /
    • 2001
  • 데이터 마이닝을 통해 우리는 숨겨진 지식, 예상되지 않았던 경향 그리고 새로운 법칙들을 방대한 데이터에서 이끌어내고자 한다. 본 논문에서 우리는 사용자의 구매 패턴을 발견하여 사용자가 원하는 상품을 미리 예측하여 추천하는 알고리즘을 소개하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트윅(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트윅에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Development of New Settlement Model for Prediction of Settlement Characteristics of SCP Composite Ground (SCP 복합지반 침하거동예측을 위한 새로운 침하모델의 개발)

  • You, Sang-Ho;Park, Hyun-Il;Im, Jong-Chul;Park, Lee-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.23-32
    • /
    • 2009
  • In this study, the reliable and simple analysis method was proposed to predict the settlement characteristic of composite ground in stage of design and construction of sand compaction pile (SCP). Model parameters could be obtained by the optimization process based on genetic algorithm. In order to examine the proposed method, laboratory consolidation tests on the settlement characteristic of SCP composite ground were performed for various replacement ratio of sand such as 0 (no replacement), 20, 36, and 56%. The proposed model showed very good agreements with measured data in the relation of void ratio-log scaled stress and time-compression far each replacement ratio.

Prediction of the Seepage Rate of Concrete Face Rockfill Dam (콘크리트 표면차수벽형 석괴댐의 침투량 예측 분석)

  • Choi, Chill-Yong;Kim, Min-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.19-26
    • /
    • 2023
  • This research aimed to predict the seepage rate in the base rocks of a concrete face rockfill dam (CFRD) by conducting numerical analysis under various conditions. We examined the relationship between basic grouting and seepage, emphasizing the significance of the permeability coefficient of the grouting material and the rock. Moreover, we observed a decrease in seepage with an increase in the cross-sectional area of the dam. The results of this study provide essential input factors and outcomes of numerical analysis, incorporating various parameters, to inform the design phase. Additionally, our findings offer a dependable approach for calculating a reasonable seepage rate during both operational and maintenance phases.

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Effects of Storage Gas Concentrations on the Transpiration Rate of Fuji Apple during CA Storage (CA저장 기체조성에 따른 사과 Fuji의 증산속도)

  • 강준수;정헌식;최종욱
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.261-266
    • /
    • 2002
  • A transpiration model was selected and tested experimentally to predict transpiration into of Fuji apple stored in a normal air and controlled atmospheres (l∼3% O$_2$+ l∼3% CO$_2$) at 0$\^{C}$ and 98% RH for 6weeks. CA storage decreased the respiration rate of Fuji apple by 50% when compared with normal air storage. The transpiration rates of apple showed 50∼70% higher in normal air storage than those in CA storage and were decreased by increasing CO$_2$concentration under same concentration of O$_2$. The transpiration rates estimated by the selected model were in good agreement with experimental data for Fuji apples under controlled atmosphere conditions and normal air. When the respiratory heat generation rate u of Fuji apple increased with storage conditions, the evaporating surface temperature and transpiration rate also increased. But since some portion of respiratory heat was used as latent heat in the evaporating surface, the change of u value had a little effect on the determination of the evaporation temperature and the transpiration rate.

Flow Simulation in a Meandering Channel using a 2-dimensional Numerical Model (이차원 수치모형을 이용한 사행하도 흐름모의)

  • Lee, Haegyun;Lee, Namjoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.485-492
    • /
    • 2013
  • The point sand bars of Hahoi Village on Nakdong River have undergone considerable changes including fluvial and vegetation characteristics due to flood regulation by the dams constructed upstream. In this study, the numerical fluvial/sediment and water quality model, KU-RLMS, is applied to the aquatic area near Hahoi Village (middle/upper region of the Nakdong River) for clarifying the mechanisms of changes in hydraulic and aquatic characteristics. The fixed-bed hydraulic experiment was carried out for horizontal two-dimensional numerical model. The numerical simulation reveals that flow is accelerated near the left bank of Booyongdae downstream of the Hahoi Village area. Circulatory flow pattern was observed at the right bank downstream of Hahoi Village. The simulation was in good agreement with the hydraulic/physical experiment. For the discharge of design flood, at the area of circulatory flow pattern, the superelevation of about 1.0 m at the right bank was predicted compared to the left bank of high flow velocity, which is also in good agreement with hydraulic experiment.

Effects of Acoustic Boundary Conditions on Combustion Instabilities in a Gas Turbine Combustor (음향 경계 조건이 가스터빈 연소기에서의 연소불안정에 미치는 영향)

  • Lim, Jaeyoung;Kim, Deasik;Kim, Seong-Ku;Cha, Dong Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • This study predicts the basic characteristics of combustion instabilities in a gas turbine lean premixed combustor using ASCI3D code which is a FEM(Finite Element Method)-based Helmholtz solver. The prediction results show the good agreement with the measured data in modeling the overall combustion instability features, however, the code is found to overpredict the unstable conditions. As one of the efforts to improve the model accuracy, the effects of acoustic boundary conditions on the instability growth rate are analyzed. As a result, it is shown that the acoustic reflection coefficient has a great impact on the instability and the prediction accuracy can be enhanced by defining the precise acoustic conditions.

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.