Effects of Storage Gas Concentrations on the Transpiration Rate of Fuji Apple during CA Storage

CA저장 기체조성에 따른 사과 Fuji의 증산속도

  • 강준수 (동의공업대학 식품생명과학과) ;
  • 정헌식 (경북대학교 농산물가공저장유통기술연구소) ;
  • 최종욱 (경북대학교 식품공학과)
  • Published : 2002.09.01

Abstract

A transpiration model was selected and tested experimentally to predict transpiration into of Fuji apple stored in a normal air and controlled atmospheres (l∼3% O$_2$+ l∼3% CO$_2$) at 0$\^{C}$ and 98% RH for 6weeks. CA storage decreased the respiration rate of Fuji apple by 50% when compared with normal air storage. The transpiration rates of apple showed 50∼70% higher in normal air storage than those in CA storage and were decreased by increasing CO$_2$concentration under same concentration of O$_2$. The transpiration rates estimated by the selected model were in good agreement with experimental data for Fuji apples under controlled atmosphere conditions and normal air. When the respiratory heat generation rate u of Fuji apple increased with storage conditions, the evaporating surface temperature and transpiration rate also increased. But since some portion of respiratory heat was used as latent heat in the evaporating surface, the change of u value had a little effect on the determination of the evaporation temperature and the transpiration rate.

CA저장 중 저장기체 조성에 따른 사과 Fuji의 증산속도를 측정하고, 같은 조건에서 증산속도를 예측하기 위한 수학적 모델을 설정하여 증산속도를 예측하였다. 온도 $0^{\circ}C$, 상대습도 98%, 공기 유속 0.25m/s의 저장조건에서 6주 동안 CA저장하였을 때 사과 Fuji의 호흡속도는 일반저온저장에 비하여 50%이하로 낮출 수 있었다. 같은 저장조건에서 일반저온저장에서의 사과의 증산속도가 CA저장에 비하여 50~70 % 높았으며, 일정한 산소농도의 CA저장에서는 저장기체 중 이산화탄소농도가 높을수록 증산속도는 감소하는 것으로 나타났다. 본 연구에서 채택한 모델로 예측한 증산속도는 실측치와 유사한 값을 나타내어 본 연구에서 채택한 모델로 CA 저장 중 저장기체 조성에 따른 사과 Fuji의 증산속도를 잘 예측할 수 있었다. 사과의 증산속도는 호흡열량에 비례하여 증가하는 경향을 나타내었으나 증산속도의 증가폭은 호흡열량의 증가폭에 미치지 못하였다. 이는 호흡열량이 증가하면 사과의 증발표면의 온도가 높아져서 증산속도가 커질 수 있게 되지만, 증산속도의 증가에 따른 증발잠열의 증가가 증발표면의 온도를 미세하게 낮추어 주므로 일어나는 현상으로 볼 수 있다.

Keywords

References

  1. Dewey, D.H. (1983) Development in food preservation-2, Applied science publishers, p.1-24
  2. Kader, A.A. (1981) Modified atmospheres and low pressure systems during transit and storage. U.C. Davis Plant science 196 Syllabus:10-1-10-10.
  3. Lau, O.L. and Looney, N.E.(1982) J. Amer. Soc. Hort. Sci., 107, 531-534
  4. Lidster, P.D. McRae, K.B. and Sanford, K.A. (1981) Responses of 'McIntosh' apples to low oxygen storage. J. Amer. Soc. Hort. Sci., 106, 159-162
  5. Kajiura, I. (1972) Effects of gas concentration on friuts. VI .Effects of carbon dioxide concentrations on 'Jonathan' and 'Ralls' apple fruits. Jap. J. Hort. Sci., 41, 301-311 https://doi.org/10.2503/jjshs.41.301
  6. Meheriuk, M. and Porritt, S.W. (1971) Controlled atmosphere storage behavior of a spur and standard type red delicious apple. Can. J .Plant Sci., 51, 246-248 https://doi.org/10.4141/cjps71-049
  7. Sastry, S.K. and Buffington, D.E. (1982) Transpiration rate of stored perishable commodities. ( A mathematical model and experiments on Tomatoes. ) ASHRAE Transactions, 88, 159
  8. Sastry, S.K., Baird, C.D. and Buffington, D.E. (1978) Transpiration rates of certain fruits and vegetables. ASHRAE Transactions, 84, 237-255
  9. Gaffney, J.J., Baird, C.D. and Chau, K.V. (1985) Influence of air flow rate, respiration, evaporating cooling, and other factors affecting weight loss calculations for fruits and vegetables. ASHRAE Transactions, 91, 690
  10. Pieniazek, S.A. (1944) Physical characters of the skin in relation to apple fruit transpiration. Plant physiology, 19, 529-536 https://doi.org/10.1104/pp.19.3.529
  11. Fockens, F.H. and Meffert, H.F. (1972) Biophysical properties of horticultural products as related to loss of moisture during cooling down, J. Sci. Fd Agric., 23, 285-298 https://doi.org/10.1002/jsfa.2740230304
  12. Hayakaya, K. I. (1978) Computerized simulation for heat transfer and moisture loss from an idealized fresh produce. Trasnsactions of the ASAE, 1015-1024
  13. Chau, K.V., Gaffney, J.J. and Bellagha, S. (1984) Simulation of heat transfer in products with internal heat generation and transpiration. ASAE paper, 84-6513, 1-12.
  14. Oteh, U.U. and Zachariah, K.P. (1985) Psychrometry, a microcomputer approach, International J. of Refrig., 8, 246-248 https://doi.org/10.1016/0140-7007(85)90124-0
  15. Lee, R.E. and Roger, E.G. (1981) Atmospheric pressure effect on vapor pressure deficit and potential moisture loss from horticultural commodities. Transactions of the ASAE, 24, 252 https://doi.org/10.13031/2013.34234
  16. Yunus, A.C. and Michael, A.B. (1989) Thermodynamics, McGraw-Hill book company, p.765
  17. Geankoplis, C.J. (1978) Transport processes and unit operations, Allyn and Bacon Inc., p275-276
  18. Geankoplis, C.J. (1972) Mass transport phenomena, Holt Rinehart and winston, Inc., p290
  19. Batty, J.C. and Steven, L.F. (1983) Food engineering fundamentals, John Wiley and Sons, p279-282
  20. Lentz, C.P. and Rooke, E.A. (1964) Rate of moisture loss of apples under refrigerated storage conditions. Food Technol., 18, 119-121
  21. Bohling, H. and Hansen, H. (1983) Respiration of apples during storage as a function of different atmospheres and temperatures. Acta Horiculture, 138, 93-105
  22. Kang, J.S. and Lee, D.S. (1998) A kinetic model for transpiration of fresh produce in a controlled atmosphere. J. of Food Engineering, 35, 65-73 https://doi.org/10.1016/S0260-8774(98)00009-0
  23. Kader, A.A. (1992) Postharvest technology of horticultural crops, University of California, p15