• Title/Summary/Keyword: 좌우거동

Search Result 190, Processing Time 0.026 seconds

Reinforcing Effect of Micropiles According to the Cohesive Characteristics of the Soil Layer Beneath Foundations (파일직경과 기초하부 토사층의 점착특성에 따른 마이크로파일 보강효과)

  • Jang, Chang-Hwan;Kim, Mu-Yeun;Hwang, Tae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.41-53
    • /
    • 2024
  • Micropiles are small, cast-in-place piles with a diameter of 300 mm or less, primarily used to reinforce existing structures and support new constructions. As the application of these piles has expanded, extensive research has been conducted on their bearing characteristics, particularly in micropiled rafts. These studies have consistently demonstrated the positive impact of micropiles on foundation reinforcement. However, previous research often overlooked the potential variations in behavior between micropiled and conventional piled rafts based on different pile conditions. Furthermore, the influence of the cohesive characteristics of the soil layer beneath the foundation on the reinforcing effect of the micropiles has not been adequately addressed. This study, therefore, undertook 3D numerical analysis to assess the reinforcing effect of micropiles, considering both pile conditions and the cohesive characteristics of the soil layer beneath the foundation. The findings revealed that micropiles are significantly more effective in non-cohesive soil layers compared to cohesive ones, with the potential to increase the bearing capacity of the raft by up to 3.7 times.

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

A Study on the Sorption Characteristics of Polycyclic Aromatic Hydro-carbons(PAHs) and Cadmium by Organoclays (유기점토에 의한 다환방향족 탄화수소와 카드뮴의 흡착특성 연구)

  • Seung Yeop Lee;Soo Jin Kim
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.171-176
    • /
    • 2003
  • The fate and behavior of polycyclic aromatic hydrocarbons(PAHs) and heavy metals in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants. In our experiment, PAH sorption by hexadecyltimethylammonium(HDTMA)-modified smectite linearly increased in proportion to the amount of HDTMA added on the clay. However, trimethylammonium(TMA)-modified smectite did not show superiority in its sorption of PAH compared with the HDTMA-smectite or dodecyltrimethylammonium(DTMA)- smectite. Meanwhile, the smectites modified with the same cationic surfactants adsorbed Cd$^{2+}$(heavy metal) significantly from water at low surfactant loading level, but the Cd$^{2+}$ adsorption linearly decreased as the loading of surfactant increased. The result shows that the sorption tendency of organoclays for organic or inorganic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. This reveals that the stabilization and configuration of cationic surfactant formed on the clay interlayer of different sizes may be an important factor in controlling the sorptive capacity of each pollutant in the environment.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

A Study on the Characteristics of High-Tension Bolted Joints' Behavior due to Surface Condition (표면상태에 따른 고장력볼트 마찰이음부의 거동특성에 관한 연구)

  • Cho, Sun Kyu;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.421-430
    • /
    • 1997
  • In this study, the static and the fatigue tests were performed with high tension bolted joints, of which the surfaces were spread with inorganic zinc-primer after shot-blast, and milling surface, and steel-natural surface, difference of friction surface condition were examined by comparing the esults of tests. From the result of synthetical investigation of this study. it is proper that using the torque management method in order to introduce design axial force to blots, and the provision of specifications that initial axial forces must be 110% of design axial forces is proper. Decreasing ratio of axial forces to initial force is proportional to common lorgarithms of time progress, it converge constant value after 20 hours, and decreasing ratio is little related to the roughness of friction surface. Sliding coefficient of milling, spreading inorganic zinc-primer, just producting is great in order and sliding forces are dependent on the applied axial forces, but if the applied axial forces are great, sliding coefficient become small by a loss of roughness. So it is confirmed that relation between the applied axial forces and the sliding forces are not proportional linearly. From the result of estimation on fatigue strength, all specimens satisfy the specifications with B-grade and milling surface is lower than the others about 14% in fatigue strength because in milling surface lose the function of friction-types joints at lower number of cycles. From the result of eximination for the distribution area of compressive force, friction area near to inside bolt is wider in the direction of stress than near to outside. It is guessed that this situation occurs because outside bolts firstly change from the friction connection to the bearing connection.

  • PDF

Experiment and Strength Analysis of High-Strength RC Columns (고강도 철근 콘크리트 기둥의 실험 및 강도해석)

  • Son, Hyeok-Soo;Kim, Jun-Beom;Lee, Jae-Hoon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.149-160
    • /
    • 1999
  • This paper is a part of a research aimed at the verification of basic design rules of high-strength concrete columns. A total of 32 column specimens were tested to investigate structural behavior and strength of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength. steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356 kg/$cm^2$ to 951 kg/$cm^2$ and the longitudinal steel ratios were between 1.13 % and 5.51 %. Test results of column sectional strength are compared with the results of analyses by ACI rectangular stress block, trapezoidal stress block, and modified rectangular stress block. Axial force-moment-curvature analysis is also performed for predicting axial load-moment strength and compared with the test results. The ACI rectangular stress block provides over-estimated column strengths for the lightly reinforced high strength column specimens. The calculated strengths by moment-curvature analyses are highly affected by $k_3$ values of the concrete stress-strain curve. Observed failure mode. concrete ultimate strain, and stress block parameters are discussed.

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

A Study on the Behaviour of Single Piles and Pile Groups in Consolidating Ground from Coupled Consolidation Analyses (연계압밀해석을 통한 압밀이 진행 중인 지반에 근입된 단독말뚝 및 군말뚝의 거동연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.15-25
    • /
    • 2016
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of single piles and pile groups in consolidating ground from coupled consolidation analyses. Single piles, $4{\times}4$ and $6{\times}6$ piles inside groups with a spacing of 2.5D were considered, where D is the pile diameter. It has been found that dragload and downdrag on the piles developed rather quickly at the early stage of consolidation. However, when the degree of consolidation was more than 50~75%, only little increases of dragload and downdrag were induced on the pile. Negative Skin Friction (NSF) on the pile in the fill layer was mobilised quickly and remained constant throughout further consolidation. The development of NSF is influenced both by the relative shear displacements at the pile-soil interface and the vertical effective soil stresses during consolidation. The former governed the early stage of consolidation and the latter affected the later stage of consolidation. The vertical effective soil stresses adjacent to the piles were reduced due to the shear stress transfer at the pile-soil interface, in particular for piles inside the pile groups. The range of NSF influence zone concerning the reductions of the effective vertical soil stresses was about 20D measured from the piles in the horizontal direction. On the contrary, the effective horizontal soil stresses acting on the piles were similar to those at the far field.

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.