• Title/Summary/Keyword: 좌우거동

Search Result 190, Processing Time 0.024 seconds

Comparison of Splices between Bolts and Welding Spliced PHC Piles (볼트 수직이음 PHC말뚝와 용접이음 PHC말뚝의 이음부 거동 비교)

  • Kim, Myunghak;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.93-103
    • /
    • 2018
  • Behaviors of splices between bolts and welding spliced PHC piles using the tensile strength test were analyzed. The bolts spliced PHC piles, which were tightened over $200N{\cdot}m$ tightening torque, showed straight V shaped line at splices at the lowest 20 N load. Both sides of PHC piles stayed straight, so the full section of bolts spliced piles did not show the unifying behavior, which was the most important performance requirement as pile. Other bolts spliced PHC piles, tightened with $20N{\cdot}m$ loosening torque, also showed the same straight V shaped line at splices for each step of loading. The full section of bolts spliced piles did not return to the initial position after each step of unloading and did not show the elastic material behavior. The splices quality of bolts spliced piles is much lower than that of welding spliced piles with respect to displacement of splices during each step of loadings, residual displacements during each step of unloadings, and failure loads. Results showed that bolts spliced PHC piles, tightened with both over $200N{\cdot}m$ and as low as $20N{\cdot}m$ torque, fell short of performance requirements of spliced PHC pile.

Study on the effect of cable on the lateral behavior of S-shaped Pedestrian-CSB (S형 보도사장교의 케이블이 횡방향 거동에 미치는 영향 연구)

  • Ji, Seon-Geun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.577-584
    • /
    • 2019
  • Recently, CSB(Cable-Stayed Bridge) have been attempted to be atypical forms for landscape elements in Korea. CSB with new geometry need to analyze their characteristics clearly to ensure structural safety. This study's bridge is the S-shaped curved pedestrian CSB that has a girder with S-shape plane curve and reverse triangular truss cross section, inclined independent pylon, modified Fan type main cable and vertical backstay cable. Curved CSB can have excessive lateral displacement and moment when the tension is adjusted, focusing only on longitudinal behavior, such as a straight CSB. In order to analyze the effect of the cable on the lateral behavior of bridges, the cable is divided into two groups according to the lateral displacement direction of the pylon due to tension. The influence of the combination ratio of GR1 and GR2 on the girder, bearing, pylon, and vertical anchor cable was analyzed. When the tension applied to the bridge is 1.0GR1 plus 1.0GR2, In the combination of 1.2GR1 plus 0.8GR2, the stress on the left and right upper member of the truss girder and the deviation of the both were minimized. In addition, the horizontal force of the bearing, the lateral displacement and moment of the pylon, and the tension of the vertical backstay cable also decreased. This study is expected to be used as basic data for determination of tension of CSB with similar geometry.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Shear Strength Evaluation of Composite Colluvial Soil (토질구성이 다양한 붕적층의 합리적인 전단강도 평가방법)

  • Lee, Kang-Il;Kang, Jun-Ho;Kim, Tae-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.25-34
    • /
    • 2009
  • Determination of design parameters of composite ground including colluvial soil layer is far difficult because the maximum particle size of such a soil is remarkably large and particle distribution may vary from area to area. The stress-strain behavior of colluvial soils is in fact dependent upon the engineering characteristics at the boundary between coarse and fine materials. However, strength parameters are in general determined based on the characteristics of fine material, which causes an underestimation of such parameters. In this study, strength parameters of colluvial soil are evaluated by means of BIMROCK model curve. In addition, limit equilibrium analysis is carried out to verify the rational shear strength evaluation.

  • PDF

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

Relative Density and Stress-Dependent Failure Criteria of Marine Silty Sand Subjected to Cyclic Loading (반복하중을 받는 해양실트질 모래의 상대밀도에 따른 응력기반 파괴기준)

  • Ko, Min Jae;Son, Su Won;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • An experimental study has been conducted by using the Cyclic Direct Simple Shear apparatus to evaluate the influence of average and cyclic shear stresses on the undrained shear failure behavior of marine silty sand considering various relative densities. The obtained results show that despite using different relative densities, similar trends were gained in the cyclic shear deformation. Moreover, the cyclic shear deformation is affected mainly by the average and cyclic shear stresses. The number of cyclic loads for failure is significantly affected by the cyclic shear stress ratio and relative density, and is less affected by the average shear stress ratio. The proposed three-dimensional stress-dependent failure contour can be used effectively to assess the soil shear strength considering various relative densities in the design of foundation used for offshore structures.

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

A study on the stability analysis for double deck tunnel branch geometry (복층터널 분기 기하구조에 따른 안정성 검토에 관한 연구)

  • Park, Woo-Jeong;Jang, Namju;Kim, Kihwan;Choi, Chang-rim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.393-404
    • /
    • 2018
  • The tunnel can be planned to connect to underground roadway and surface road. The large tunnel and branch section are made when the ramp tunnel access to the main tunnel. In the branch section, stress concentration can be assigned and it can be very important for the stability of the tunnel. This study assessed the behavior of rock pillar in double deck tunnel diverging area by using a two dimensional numerical analysis. This study evaluated different safety factors according to pillar width and the ramp tunnel position in branch. By the assessment of the strength-stress ratio, tunnel pillar width is suggested in order to secure the safety factor 1.5.