• 제목/요약/키워드: 종자 영상분할

검색결과 1건 처리시간 0.016초

표현체 연구를 위한 심화학습 기반 벼 종자 분할 (Deep Learning-based Rice Seed Segmentation for Phynotyping)

  • 정유석;이홍로;백정호;김경환;정용석;이창우
    • 한국산업정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.23-29
    • /
    • 2020
  • 농업진흥청 국립농업과학원에서는 다양한 종류의 농작물에 대해 우량 종자 확보를 위한 생육환경 모니터링 및 수확된 종자의 분석과 같은 다양한 연구를 진행하고 있다. 본 논문에서는 농업진흥청에서 보유하고 있는 다양한 종류의 농작물 씨앗을 분석하기 위해 종자 객체 검출 방법을 제안한다. 제안된 방법은 Mask-RCNN을 이용한 전이학습을 수행하며 주어진 특정 환경 (일정한 조도, 흰색 배경)에서 촬영한 입력 영상을 종자 객체 인식을 위한 적절한 매개 변수 적합 (Tuning) 과정 및 영상 분할 작업을 진행한다. 제안된 방법으로 종자 객체 검출에 대한 실험결과로 벼 이삭 영상의 경우 82%와 단순한 볍씨 영상의 경우 97%의 정확도로 벼 낱알을 검출하였다. 향후 연구로 복잡한 상황의 종자 영상 분할을 위한 심화학습 기반의 접근법 및 검출된 종자 객체로부터 길이, 폭, 두께와 같은 정밀한 데이터 분석을 통하여 우량 종자 연구를 계획하고 있다.