• Title/Summary/Keyword: 종말 충격파

Search Result 5, Processing Time 0.018 seconds

Buzz Margin Determination of Supersonic Intake (초음속 흡입구의 버즈여유 결정기법)

  • Park, Ik-Soo;Choi, Jong-Ho;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • A technology for buzz margin determination is suggested to obtain stable shock structure and high compression efficiency of supersonic intake. By using the shock equilibrium equation of supersonic intake, sensitivity equation of terminal shock position for free stream and back pressure is induced and disturbances are quantified through statistical approach. Numerical results show that the sensitivity of shock position for disturbances is proportional to Mach number and the back pressure is dominant for variance of terminal shock position.

  • PDF

Dynamic Modeling Scheme for Control of the Ramjet Propulsion Systems(I) (램제트 추진 시스템의 동적 제어 모델링 기법(I))

  • Kim, Sun-Kyeong;Yeom, Hyo-Won;Jeon, Chang-Soo;Sung, Hong-Gye;Park, Ik-Soo;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.295-298
    • /
    • 2008
  • In this paper, prototype dynamic modeling scheme to control ramjet propulsion systems were proposed. From the physical understandings of engine system, a typical 2nd-order system model was applied to simulate the dynamic characteristics of fuel supply system. The shock location varience in diffuser to chamber pressure fluctuation is calculated so that the out of phase between two signals was observed.

  • PDF

Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System (초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Kim, Seong-Jin;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • Unsteady numerical analysis of an entire supersonic propulsion system from intake to nozzle was performed to study dynamic interaction between terminal shock in the intake and flame in the combustor. Both acceleration and cruise flight-modes were considered. Acoustic mode of the entire engine for both flight-modes were investigated by detail analysis of pressure fluctuation at each location of engine.

  • PDF

Buzz Characteristic of Supersonic Propulsion System with Spray Injection and Combustion (액적 분사/연소를 고려한 초음속 엔진의 buzz 특성)

  • Kim, Seong-Jin;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.411-414
    • /
    • 2010
  • In supersonic propulsion system, the inlet buzz phenomenon in the subcritical operation arises large pressure oscillation, combustion instability, and thrust loss, etc. Inlet Buzz phenomenon and the spray injection/combustion are figured out by the unified unsteady numerical analysis. TAB(Taylor Analogy Breakup) model was applied. Acoustic mode of the entire engine was investigated by detail analysis of pressure fluctuation at each location of the engine.

  • PDF

Performance Analysis for Various Flight Conditions with Air Disturbance (대기외란을 적용한 램제트 엔진의 비행 조건별 성능 연구)

  • Seo, Bong-Gyun;Choi, Jae-Hyung;Sung, Hong-Gye;Park, Jung-Woo;Park, Ik-Soo;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.588-593
    • /
    • 2011
  • In this study, the performance analysis method for ramjet engine system with atmospheric air disturbance was proposed. Flight path was determined to satisfy dynamic pressure constant at each flight altitude. The atmospheric air disturbance incoming into a engine intake was simulated by the model Tank proposed. The performance parameters was investigated at each flight condition with air disturbance. Engine operation stability was evaluated as analysis of the normal shock position.

  • PDF