• Title/Summary/Keyword: 종단방향 터널

Search Result 7, Processing Time 1.04 seconds

Prediction of Tunnel Response by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 대한 터널의 응답 예측)

  • Kim, Intai;Han, Jungwoo;Yun, Seung;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three dimensional finite element analyses. Results of the analyses show that the spatially variable ground motion cause longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the material properties of the ground change in the longitudinal direction.

  • PDF

The development of a back analysis program for subsea tunnel stability under operation: longitudinal direction (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 종단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • If a back analysis is used in various measurement information for the estimation of an operating subsea tunnel safety, it is possible to obtain the results within efficient error rate. With such a commercial geotechnical analysis program as FLAC3D, back analysis is performed with a DEA which was validated in previous studies. However, there is a problem that is relatively a time-consuming analysis. For this reason, beam-spring model-based FEM solver which takes shorter relative analysis time, was developed by Python language, and then combined with the built-DEA. In order to consider the assessment of safety of an operation tunnel near real-time, a program for longitudinal direction tunnel was developed due to its relative easy development for analysis solver engine.

Effect of Spacing of Multi-Piers on Roughness (다열기둥의 배치간격이 조도에 미치는 영향)

  • Yoon, Sung-Bum;Lee, Sang-Mok;Kim, Sun-Hyung;Lim, Chae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.515-518
    • /
    • 2006
  • 수많은 교각들이 규칙적으로 배치되어 있는 복개하천이나 하천종단교량 등의 경우 개별적인 교각의 후면부에서 발생하는 와류로 인한 에너지 손실이 누적되어 흐름에 큰 저항요인으로 작용한다. 격자기둥의 형상과 종방향 및 횡방향 배치간격이 배수시스템의 통수능에 미치는 영향을 파악하기 위해 본 연구에서는 사각형 및 둥근장방형 격자기둥에 대한 기초적인 수리 실험을 실시하고 그 결과를 분석하였다.

  • PDF

Assessment of NATM tunnel lining thickness and its behind state utilizing GPR survey (GPR탐사를 통한 NATM터널(무근)라이닝의 두께 분포 및 배면상태 평가)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.717-733
    • /
    • 2019
  • In this study, lining thickness distribution and its behind state (particularly, its void state) were analyzed using the GPR survey data performed on three currently operating NATM tunnels. Results of GPR analysis showed that void areas were mostly detected between concrete lining and primary support, particularly, near the crown of the tunnels. The lining thickness in the left-hand side of the tunnel was different from that of the right-hand side by 8.6~253.5 mm when measured in transverse direction. It was also found that longitudinal cracks were prevailed in the area lining thickness was sharply changed. Longitudinal thickness distribution at the crown was also studied and tested by performing 3 goodness-of-fit tests in order to find the most suitable thickness distribution. Normal distribution (or similar distribution) fit most suitably to the measured data if the measured average thickness was larger than designed one; Gamma and/or Inverse Gauss distribution fit to the measured data reasonably well if the measured average thickness was less than the designed value of thickness. Since actual lining thickness can be a potential index when assessing the state and safety of the unreinforced NATM tunnel lining, measuring of the lining thickness with GPR survey might be needed rather than assuming the thickness is always constant and same with the designed value.

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.