• Title/Summary/Keyword: 좀나방과

Search Result 150, Processing Time 0.021 seconds

Evaluation of Insecticidal and Antifeeding Activities of Eco-friendly Organic Insecticides Against Agricultural Insect Pests (농업해충에 대한 친환경유기농자재들의 살충력 및 섭식저해력 평가)

  • Kim, Yoo Hwa;Na, Young-Eun;Kim, Min Joon;Choi, Byung Ryul;Jo, Hyeong-Chan;Kim, Soon-Il
    • Korean journal of applied entomology
    • /
    • v.54 no.2
    • /
    • pp.99-109
    • /
    • 2015
  • Insecticidal and antifeeding activities of 29 commercialized eco-friendly organic products for managing plant diseases and insect pests against Plutella xylostella larvae, Spodoptera exigua larvae, Frankliniella occidentalis adults, and Myzus persicae adults were tested using spraying and leaf dipping bioassays under laboratory conditions. Products containing 60% Sophora extract (EOIS) and mixtures (EOISm) with Sophora extract, Stemona japonica extract, Melia azedarach extract, and Nepeta cataria extract as well as mixtures (EOISc) with Sophora extract, Chenopodium ambrosioides extract, and Melia azedarach extract as active ingredients showed strong insecticidal activity at recommended concentration against P. xylostella larvae. At half concentration, their insecticidal activities were decreased under 50%. The EOIS gave good insecticidal activity against S. exigua larvae and also showed 85% and 95% insecticidal activity at 24 and 48 hours after treatment to F. occidentalis adults, respectively. For M. persicae adults, EOISm and mixtures (EOIR) containing rape seed extract, neem extract, and castar oil produced 93% and 68% insecticidal activity, but their activities did not be increased at double concentration. EOISm only showed 100% contact toxicity against M. persicae adults exposed to dipping leaves. Interestingly, the insecticidal activity of EOIR and EOICi (citronella oil and derris extract) against M. persicae adults was increased with exposed time and concentration. In addition, EOICe (cedar oil), EOIS, EOISm, EOISc, EOIM (microorganism), EOIR, EOIPe (plant extract), and EOIT (tea tree extract) gave strong antifeeding activity against S. exigua and P. xylostella larvae. EOIB, EOIBs, EOIM, EOICi, and EOIMc showed above 70% antifeeding activity to the lepidopteran larvae. These results indicate that mixtures containing 2 to 3 plant extracts with Sophora extract show good activities against insect pests, although the difference of insecticidal and antifeeding activities was produced depending on both a tested insect species and an active ingredient or concentration.

Transciptomic Analysis of Larval Fat Body of Plutella xylostella under Low Temperature (저온조건에서 배추좀나방(Plutella xylostella) 지방체 유전자 발현 변화)

  • Kim, Kwang-Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.296-306
    • /
    • 2019
  • BACKGROUND: Temperature is known to be the main factor affecting development, growth and reproduction of organisms and also a physical factor directly related to insect survival. Insects as ectothermal species should be responsive to climate changes for their survival and develop various survival strategies under the unfavorable temperature such as low temperature. The purpose of this study is to identify genes contributing to adaptation of low temperature. METHODS AND RESULTS: To identify genes contributing to adaptation of low temperature, the transcriptomic data were obtained from fat body in Plutella xyostella larvae via next generation sequencing. We identified structural proteins, heat shock proteins, antioxidant enzymes, detoxification proteins, and cryoprotectant mobilization and biosynthesis-related proteins. Genes encoding chitinase, cuticular protein, Hsp23, chytochrome protein, Glutathione S transferase, and phospholipase 2 were up-regulated under low temperature. Proteins related to energy metabolism such as UDP-glycosy ltransferase, trehalase and trehalose transporter were down-regulated. CONCLUSION: When insect pests were exposed to low temperature, changes in gene expression of fat body could provide some hints for understanding temperature adaptation strategies.

Genetic Identity of a Korean Isolate of an Endoparasitoid Cotesia plutellae(Hymenoptera: Braconidae), Among Reproductive Incompatibility Types (생식형불일치 유형에 따른 국내 프루텔고치벌(Cotesia plutellae)의 유전적 위치)

  • Park, Jung-A;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.57-62
    • /
    • 2007
  • Reproductive incompatibility is an Important factor to select a specific biologlcal control agent for successful augmentation of the corresponding endogenous population. An endoparasitoid, Cotesia plutellae (Kurdjumov), is an effective control agent to diamondback moth, Plutella xylostella (L.) and has been known to be classified into two groups in terms of reproductive incompatibility. This study analyzed an Korean population of C. plutellae in terms of morphological characters and mitochondrial DNA marker, which did not match with either of two reproductive incompatibility groups. These results suggest that a Korean population of C. plutellae can be involved in a novel reproductive group. For any augmentation program of C. plutellae in Korea, reproductive incompatibility should be seriously considered to select a particular exotic population.

Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature (고온에서 배추좀나방 유충 지방체의 유전자 발현 변화 분석)

  • Kim, Kwang Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.324-332
    • /
    • 2018
  • BACKGROUND: Insects are ectothermic organisms in terrestrial ecosystems and play various roles such as controlling plant biomass and maintaining species diversity. Because insects are ectothermic, their physiological responses are very sensitive to environmental temperature which determines survival and distribution of insect population and that affects climate change. This study aimed to identification of genes contributing to fitness under high temperature. METHODS AND RESULTS: To identify genes contributing to fitness under high temperature, the transcriptomes of fat body in Plutella xyostella larva have been analyzed via next generation sequencing. From the fat body transcriptomes, structure-related proteins, heat shock proteins, antioxidant enzymes and detoxification proteins were identified. Genes encoding proteins such as structural proteins (cuticular proteins, chitin synthase and actin), stress-related protein (cytochrome P450), heat shock protein and antioxidant enzyme (catalase) were up-regulated at high temperature. In contrast expression of glutathione S transferase was down-regulated. CONCLUSION: Identifications of temperature-specific up- or down-regulated genes can be useful for detecting temperature adaptation and understanding physiological responses in insect pests.

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" (미생물살충제 "비티플러스" 액상 제형화 및 품질 분석 기술에 관한 연구)

  • Eom, Seonghyeon;Park, Hyeonji;Kim, Kyusoon;Hong, Youkyeong;Park, Jiyeong;Choi, Bongki;Kim, Joonsung;Kim, Kunwoo;Kang, Moonsoo;Yang, Kyunghyung;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.

Characteristics of Resistance to Chlorpyrifos in Diamondback-moth (Plutella xylostella L.) (Chlorpyrifos 저항성 배추좀나방(Plutella xylostella L.)의 살충제 저항성 특성)

  • Kim, Kyung-Ju;Kim, Sung-Su;Kim, Song-Mun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.288-295
    • /
    • 2003
  • To determine the mechanism of the resistance to organophosphorus insecticide, chlorpyrifos, in diamondback-moth (Plutella xylostella L.), activities of esterases, glutathione-S-transferase (GST) and AChE insensitivity which were known for causing factor of resistance were measured. Also, the relationship between AChE insensitivity and the resistant ratio was investigated to inquiry the cross-resistance. The resistant ratio of chlorpyrifos-resistant strain (CRS) of diamondback-moth at the 6th generation was developed 160 fold compared to susceptible strain (SS) one. Activity of GST that are extracted from CRS was 1.7-fold higher than that from SS. However, activity of total esterases from CRS was similar to that from SS. In AChE insensitivity test, CRS was 11.8-fold less sensitive than that from SS. CRS was ranged from 17.6 to 33.6-fold less sensitive than SS to other insecticides having same target site with chlorpyrifos such as dichlorvos, dimethylvinphos and carbofuran. Insensitivity of AChE to phenthoate-oxon, however, was 1.7-fold. Resistance of CRS was 82-fold, 47-fold and 42-fold higher than SS to dichlorvos, dimethylvinphos and carbofuran, respectively, but 2.3-fold to phenthoate and then we could identify that the resistance development of insecticide might have a lot of difference among the chemicals with the same target site. The relationship between the AChE insensitivity and the resistant ratio was significantly correlated$(r=0.9951^{**},\;p^{(0.01)}$. This result indicates that AChE insensitivity was associated with insecticide resistance. Overall, these results suggest that insensitivity of AChE was an important factors to chlorpyrifos resistance in diamondback-moth, and the slightly increased activity of GST may also have contributed to that.

Ecological Characteristics of Cotesia glomerata L. (Hymenoptera: Braconidae) and Its Parasitism Rates for Diamondback Moth (Plutella xylostella L.) in a Kimchi Cabbage Field in The Korean Highland Area (배추나비고치벌(Cotesia glomerata L.)의 생태적 특성 및 고랭지 배추밭에서 배추좀나방(Plutella xylostella L.)에 대한 기생률)

  • Kwon, Min;Kim, Juil;Hong, Eunju;Lee, Yeonggyu
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.355-362
    • /
    • 2019
  • Cotesia glomerata L., an internal parasitoid wasp, attacks the larvae of both the cabbage white butterfly (Artogeia rapae L.) and the diamondback moth (Plutella xylostella L.). It can be utilized as a natural biological enemy to control these two insect pests in the summer cabbage fields of the Korean highland areas. The developmental response and sex ratio of C. glomerata to various temperatures and its longevity were examined in the laboratory. The egg-to-larva and pupa stages of C. glomerata were 12.1 ± 2.1 and 6.4 ± 1.8 days, respectively, at 20℃, The developmental threshold for egg-to-larva and pupa stages were 7.7 and 8.5℃, respectively. The sex ratios of C. glomerata when reared under various temperatures were 61.0 ± 4.5% at 15℃, 44.2 ± 1.0% at 20℃, and 39.0 ± 2.3% at 25℃, and the incidence of females increased as the temperature decreased. The longevity of C. glomerata when fed a 10% sugar solution was 20.4 ± 0.2 days, while in adults without any feed, the longevity was 3.6 ± 0.1 days. Indoor reared C. glomerata adults were released into cabbage fields from 2007 to 2018, in early August of each year, and the outdoor parasitism rates were surveyed. The parasitism rates were found to increase gradually as the year passed (Y = 0.2696X + 2.8633, R2 = 0.3994). The highest parasitism rate was observed in 2013 at 7.6%, and the lowest was in 2018 at 6.5 %. These results could be used as basic information for biological control of kimchi cabbage pests at highland fields.

Electroantennogram Responses of Spodoptera frugiperda Males (Lepidoptera: Noctuidae) to Sex Pheromone Compounds (열대거세미나방 성페로몬 성분에 대한 수컷의 촉각 반응)

  • Cho, Jum Rae;Kim, Jeong Hwan;Seo, Bo Yoon;Seo, Meeja;Lee, Gwan Seok
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.363-367
    • /
    • 2021
  • This study was conducted to investigate the EAG (electroantennogram) response of Spodoptera frugiperda male to sex pheromone compounds and whether or not S. frugiperda male adults would undergo double mating. The EAG response of S. frugiperda male adult to Z9-14:Ac increased in a dose-dependent as the dose increased. Among the 7 sex pheromone components investigated, male EAG recording was the highest to Z9-14:Ac. The EAG response of S. frugiperda male adult to the mixed sex pheromone component was greater than that to the single component. Male adults of S. frugiperda were capable of double mating under laboratory condition, and the secondary mating rate increased to 72.2% compared to the 58.3% of primary mating rate. The EAG response of mated S. frugiperda male adult was not different from that of unmated S. frugiperda male. In the net house test with sex pheromone lure, mated male adults were not captured during the test period. Also, strangely, unmated male adults were not captured even in a trap equipped with virgin female adults, although the antennae of mated male adult were responded to the sex pheromone component in the laboratory. Probably, it is thought that the mated male adults may not have been caught in the trap be due to flight ability which has been decreased after mating. The field attractiveness of S. frugiperda male adults to sex pheromones remains to be further elucidated.

An Investigation and Evaluation of Insect Pests in Greenhouse Vegetables in Jeonbuk Province (전북지역 시설 채소류 작물별 해충 발생양상 및 종 동정)

  • Lim, Ju-Rak;Park, Sung-Hee;Moon, Hyung-Cheol;Kim, Ju;Choi, Dong-Chil;Hwang, Chang-Yeon;Lee, Kwan-Suk
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.271-280
    • /
    • 2012
  • Twenty-two families and 39 species of insect pests were surveyed on five families and 20 species of greenhouse vegetables in Jeonbuk province. The species of insect pests and the families of plants infested were seven families and 10 species on Chenophodiaceae, 16 families and 25 species on Brassicaceae, nine families and 10 species on Apiaceae, six families seven species on Liliaceae, and 13 families and 29 species on Compositae. Spodoptera exigua H$\ddot{u}$bner and Spodoptera litura Fabricius occurred on all vegetables. Additionally, Frankliniella intonsa Trybom, Trialeurodes vaporariorum Westwood, Myzus persicae Sulzer, and Phytomyza horticola Goureau occurred on all vegetables except Liliaceae(Allium tuberosum Rottl. and Allium fistulosum L.). Thirteen species of insect pests including Hymenia recurvalis Fabricius occurred only one vegetables, indicating that they were monophagous. The main insect pests of Chenophodiaceae were M. persicae, H. recurvalis, S. exigua and S. litura whereas Dolycoris baccarum Linn$\acute{e}$, Trialeurodes vaporariorum Westwood, Trichoplusia ni H$\ddot{u}$bner, and P. horticola were not recorded. On Brassicaceae were Brevicoyne brassicae Linn$\acute{e}$, M. persicae, Phaedon brassicae Baly, Phyllotreta striolata Fabricius, Plutella xylostella Linn$\acute{e}$, Hellula undalis Fabricius, S. litura, Pieris rapae Linn$\acute{e}$, Artogeia rapae Linn$\acute{e}$, and Athalia rosae ruficornis Jakovlev, but six species including Frankliniella intonsa Trybom were not recorded. The degree of damage by insect pests on Apiaceae was low, five species including Tetranychus kanzawai kishida, F. intonsa, T. vaporariorum, S. litura, and P. horticola were not recorded. The main insect pests on Liliaceae were Thyatira tabaci Lindeman, Acrolepiopsis sapporensis Matsumura, S. exigua, and Liriomyza chinensis Kato. The damage to Compositae by insect pests was relatively low except that of S. litura.

Expression of Fusion Products of Insecticidal Crystal Protein Genes from Two Different Bacillus thuringiensis Strains (두종의 Bacillus thuringiensis 내독소단백질 유전자의 융합에 의한 발현)

  • 제연호;김상현
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.36-42
    • /
    • 1993
  • Expression of insecticidal protein by fusion product of truncated HD-1[CryIA(a)] N-terminal and HD-73[CryIA(c)] C-Terminal fragment of Bacillus thruingiensis subsp. kurstaki was investigate. Immunological analysis of transformants by using polyclonal antisera raised against the whole-crystal protein of HD-1 revealed that SK4 and SK5 were observed cross-reaction with polypeptides of 77-kDa and 105-kDa, respectively. Bioassay of the transformant pSK5 to Plutella maculipennis and Heliothis assulta were 96% and 97%, respectively.

  • PDF