• Title/Summary/Keyword: 조향휠 각도

Search Result 14, Processing Time 0.022 seconds

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

A Study on the Dynamics of Police Motorcycle Simulator (경찰 오토바이 시뮬레이터의 동역학에 관한 연구)

  • Ahn, Dong-Hyuk;Cho, Sung-Hyun;Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.533-542
    • /
    • 2020
  • In this study, we developed a PC - based motorcycle simulator based on the development technology of the virtual patrol motorcycle training system. In order to get the impression that the motorcycle simulator is operating in a realistic way, it is important to have a reliable signal transmission and operation feeling between the driver and the simulator. In order to achieve this, we developed a system that can apply the sub-systems of the actual vehicle to the motorcycle simulator in order to generate the same operation feeling as the actual vehicle. Based on these results, We have developed a method for generating a feedback queue. Vehicle dynamics simulates real-time vehicle motion by receiving input from a steering wheel, accelerating / decelerating pedal, etc. operated by a driver on a vehicle simulator and transmitting the result to a visual and acoustic system, It is the central element of the simulator to generate. I want to summarize the main requirements of simulation dynamics.

The effect of operating telematics device in vehicle on driver behaviors (운전중 텔레매틱스 장치 사용이 운전행동에 미치는 영향)

  • Sihn, Yong-Kyun;Ryu, Jun-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.39-47
    • /
    • 2008
  • With dramatic development of IT technology and start of DMB service, installing the DMB equipment in a vehicle for watching TV programs and literal or pictorial traffic information are increasing. Watching the DMB during driving the vehicle could cause visual and cognitive distraction to drivers as much as eating food, operating radio and using mobile phone. However, there is not much empirical research for this topic and no research examined the effect of watching the DMB on driving behaviors in Korea. So, the present study examined the effect of watching the DMB on the driving behaviors with car simulator experiment. Within subject design was used in the study. That is, all subjects drove the vehicle both in the watching DMB condition and the non-watching DMB condition. The results indicated that subjects in the watching DMB condition took longer time to arrive at the destination and operated accelerator and brake pedal rapidly than subjects in the non-watching DMB condition. That is, their overall driving stability was lower than non-watching subjects'. Additionally, we examined the difference among the DMB control conditions (i.e., keypad condition, touch-pad condition and remote controller condition) in the driving behaviors. Finally, we discussed the limitations and the implications of the present study.