• Title/Summary/Keyword: 조직 등가 팬텀

Search Result 37, Processing Time 0.028 seconds

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF

Dose Evaluation of Three-Dimensional Small Animal Phantom with Film Dosimetry (필름계측을 이용한 3차원 소동물 팬텀의 선량평가)

  • Han, Su Chul;Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

Improvement on resolution of mono-filament wire (초음파 팬텀 내 모노필라멘트의 해상력 개선에 대한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • The purposes of this study are to improve the ultrasound resolution of various nylon and metallic mono-filament wires, therefore, it was tested that it analyze on nylon mono-filament wire of 0.1 mm in A Co.'s ultrasonic phantom and synthesis of C15 g tissue mimicking materials(TMM), analyze resolution of nylon and metallic mono-filament wires in water and TMM. The results obtained were summarized as follows: 1. Metallic mono-filament wire of 0.1 mm and nylon mono-filament wire of 0.12 mm, 180 denier showed that it cleared dot echo pattern. 2. Metallic and nylon mono-filament wire of 0.2 mm showed that it cleared comet tail echo by reverberation artifact. 3. Nylon and metallic mono-filament wire of 0.1 mm showed that it can used for dead zone and axial resolution test. 4. Nylon mono-filament wire compared with metallic mono-filament wire showed that it satisfy elasticity and construction. 5. Degree of hardness of na not changed mono-filament's echo textures.

  • PDF

A Study on the Quality of Image of Ultrasound Using the Tissue-mimicking Phantom - in some hospitals jeju province (조직등가팬텀을 이용한 임상초음파 영상의 질에 관한 연구 - 제주도 내 병원을 중심으로 -)

  • Yang, Jeong-Hwa;Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • In diagnostic ultrasound, the quality of image affect to diagnose. To maintain suboptimal imaging uniformly, Quality Assurance of Ultrasound equipment should take periodically. This is article about examination the quality of image in diagnostic ultrasound to understand conditions of probes in hospitals. There is comparative study of convex and linear probes on ultrasound using tissue-mimicking phantom included simulated cysts, echogenic structures. The ultrasonic attenuation coefficient versus frequency of 0.5 dB is representative of normal liver and 0.7 dB is representative of fatty liver condition in ultrasound phantom. There are results of convex probe, 0.5 dB, vertical group, cystic masses, high contrast masses are mostly shown but 0.7 dB, mid level in vertical group, cystic masses and high contrast masses are nearly visible. In linear probe, 0.5 dB, mid level in vertical group, two or four of them are shown in cystic masses and high contrast masses but there are not visible in 11 of cases. 0.7 dB, there are mostly appear under 6 in vertical group, two or four of them show in cystic masses and high contrast masses and there are not shown in 40 of cases, besides. Linear probes in fatty liver condition of ultrasound instrument are not good in the quality of image practically. So there needs to be replace and fix of probes. Actually management of ultrasound probes is inadequate in hospitals. So if there are program of evaluation to check probes periodically in hospitals from establishment of the ultrasound equipment, there will get better image and have a suitable condition of instruments further more.

  • PDF

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Radiation Dose Reducing Effect during the AEC System in the Chest and Abdomen of the MDCT Scanning (흉부 및 복부에서 AEC 적용에 따른 MDCT의 선량 감소 효과)

  • Lee, Jong-Seok;Kweon, Dae-Cheol;You, Beong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The purpose of the current study was to compare radiation dose of 64MDCT performed with automatic exposure control (AEC) with manual selection fixed tube current. We evaluated the CT scans of phantom of the chest and abdomen using the fixed tube current and AEC technique. Objective image noise shown as the standard deviation of CT value in Hounsfield units was measured on the obtained images. Compared with fixed tube current, AEC resulted in reduction of the chest and abdomen in the CTDIvol (35.2%, 5.9%) and DLP (49.3%, 3.2%). Compared with manually selected fixed tube current, AEC resulted in reduced radiation dose at MDCT study of chest and abdomen.

Study on Exposure Dose According to Change of Source to Image Distance and Additional Filter Using Abdomen Phantom (복부팬텀을 이용한 SID 변화와 부가필터 유무에 따른 피폭선량에 관한 연구)

  • Kim, Ki-Won;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.407-414
    • /
    • 2016
  • This study is to minimize the patient dose and maintain the image quality according to change of source to image receptor distance and applying additional filter. In this study, we used the DR system, the tissue-equivalent abdomen phantom and the aluminium filter. The exposure conditions were set to 80 kVp using AEC mode. The collimation size was $16{\times}16inch$. The exposure dose were measured 10 times when the SID was changed with 100, 110, 120 and 130 cm, respectively. The pirana 657 for dosimeter was located on center of radiation irradiation. The acquired images were analyzed by using the image J. In the results, the tube current was increased with increasing the SID but ESD was decreased with increasing the SID. The decrease of ESD attribute to use of filter that remove the photon of lower energy. In the histogram results using image J, there were differences between the ESD and the exposure conditions according to change of SID. However, there were not differences in histogram. Therefore, the exposure dose could reduced when set the longer SID. For pediatric exam, the exposure dose could reduced when used the aluminium filter.

Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR) (Digital Radiography(DR)에서 검출기의 X선 조건에 따른 흡수선량 및 영상화질 변화에 관한 연구)

  • Hwang, Jun-Ho;Jeong, Jae-Ho;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.99-106
    • /
    • 2017
  • This study focused on the issue that when a diagnostic detector is found to have a defect, a patient would be exposed to radiation and image quality would be degraded. Though dose analysis, an experiment was conducted to evaluate detector performance as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Absorbed dose, SNR and CNR were measured using a dosimeter and a tissue equivalent phantom. The experiment was conducted to compare whether the dose value shown after being attached to the back side of the phantom matches the dose value attached behind the detector, where in the conditions of skull, chest and abdomen were set at 75 kVp, 25 mAs, 110 kVp, 8 mAs, and 80 kVp, 20 mAs, respectively. As a result, there was a difference in that the dose values attached to the back side of the detector were 0.004 mGy, 0.006 mGy, 0.003 mGy, whereas those of the back side of the phantom were 0.006 mGy, 0.016 mGy, 0.017 mGy. In order to match both values, the condition was increased and SNR and CNR also increased from 88.32, 88.10, 4.09, 1.63, 87.94, 79.97 to 93.87, 93.75, 4.91, 4.03, 92.02, 84.92. Though this study, we found that when a detector is found to have a aging, it shortens the life of equipment and increases the dose of a patient, also the improvement effect of image quality is inadequate.

Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation (전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용)

  • Park, Seung-Jin;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Nah, Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.233-241
    • /
    • 1994
  • Purpose : This study was performed to verify dose distribution with the tissue compensator which is used for uniform dose distribution in total body irradiation(TBI). Materials and methods : The compensators were made of lead(0.8mm thickness) and aluminum(1mm or 5mm thickness) plates. The humanoid phantom of adult size was made of paraffin as a real treatment position for bilateral total body technique. The humanoid phantom was set at 360cm of source-axis distance(SAD) and irradiated with geographical field size(FS) $144{\times}144cm^2(40{\times}40cm^2$ at SAD 100cm) which covered the entire phantom. Irradiation was done with 10MV X-ray(CLINAC 1800, Varian Co., USA) of linear accelerator set at Department of Therapeutic Radiology, Chonnam University Hospital. The midline absorbed dose was checked at the various regions such as head, mouth, mid-neck, sternal notch, mid-mediastinum, xiphoid, umbilicus, pelvis, knee and ankle with or without compensator, respectively. We used exposure/exposure rate meter(model 192, Capintec Inc., USA) with ionization chamber(PR 05) for dosimetry, For the dosimetry of thorax region TLD rods of $1x1x6mm^3$ in volume(LiF, Harshaw Co., Netherland) was used at the commercially available humanoid phantom. Results : The absorbed dose of each point without tissue compensator revealed significant difference(from $-11.8\%\;to\;21.1\%$) compared with the umbilicus dose which is a dose prescription point in TBI. The absorbed dose without compensator at sternal notch including shoulder was $11.8\%$ less than the dose of umbilicus. With lead compensator the absorbed doses ranged from $+1.3\%\;to\;-5.3\%$ except mid-neck which revealed over-compensation($-7.9\%$). In case of aluminum compensator the absorbed doses were measured with less difference(from $-2.6{\%}\;to\;5.3\%$) compared with umbilicus dose. Conclusion : Both of lead and aluminum compensators applied to the skull or lower leg revealed a good compensation effect. It was recognized that boost irradiation or choosing reference point of dose prescription at sternal notch according to the lateral thickness of patient in TBI should be considered.

  • PDF

Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer (구강암 환자 치료시 치과용 기초상 왁스(Paraffin Wax)의 유용성 평가)

  • Na, Kyoung-Su;Seo, Seuk-Jin;Lee, Je-Hee;Yoo, Sook-Heun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • Purpose: This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Materials and Methods: Each compensator was formed by $10{\times}10{\times}1cm$ and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Results: Radiation dose attenuation ratios were shown -0.7~+3.7% for Mouth Piece, +0.21~+0.39% for Paraffin Wax and -2.71~-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ${\pm}3mm$ for Mouth Piece, ${\pm}2mm$ for Paraffin Wax and ${\pm}2mm$ mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Conclusion: Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and position reproducibility of it was remarkable as it was possible to make an anatomy reflected impression. It was also well fitted to oral cavity to transfer radiation dose planned in radiotherapy. Thus, Paraffin Wax will be an ideal material in radiotherapy for patients with oral cancer.

  • PDF