• Title/Summary/Keyword: 조절 유전자

Search Result 1,378, Processing Time 0.031 seconds

Effects of osmoticum treatments and shooting chances on the improvement of particle gun-mediated transformation in Phalaenopsis (유전자총을 이용한 팔레놉시스 형질전환 효율향상에 삼투압 조절제 및 발사횟수차이가 미치는 영향)

  • Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.216-222
    • /
    • 2014
  • This study was carried out to develop an efficient transformation protocol via particle bombardment with PLBs (protocorm-like bodies) in Phalaenopsis. To achieve this aim, osmoticum treatment and an increasing shooting chances in particle bombardment process were applied for this study. In addition, pCAMBIA3301: ORE7 vector which contains a herbicide-resistance bar gene as a selectable marker and ORE7 gene as a gene of interests were employed. With regard to the increasing chances of shooting in particle bombardment, double shooting was the best results with 1.5 ~ 2.5 times higher than those of a single or triple shooting treatment in the productioon of PPT (D-L-phosphinothricin)-resistant PLBs. However, regeneration rate of shoots in double shooting was not high as a single shooting. Further, double shooting showed 35 ~ 40% higher than that of a single shooting in the frequency of browning. Regarding effects of different osmotic treatments, combination of 0.2 M sorbitol with 0.2 M mannitol showed the best results in transformation efficiency, regeneration of transformants and reduction of browning. Putative transgenic Phalaenopsis plants were analyzed by PCR analysis and confirmed the presence of bar and ORE 7 gene. Also, real-time PCR was conducted by using 21 transgenic plants and showed only 4 plants had one copy of transgene; whereas, the other 17 plants had more than 2 copies of transgene. Transgenic phalaenopsis plants produced in this study were transferred to pots and flowered normally without morphological variations in flower and leaf.

Identification of the Maize R Gene Component Responsible for the Anthocyanin Biosynthesis of Kernel Pericarp (옥수수 종피의 안토시아닌 합성을 조절하는 R 유전자 구성요소의 구명)

  • Kim, Hwa-Yeong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.50-55
    • /
    • 2010
  • The R-r:standard (R-r:std) allele of maize R gene complex consists of S subcomplex and P component; the S subcomplex regulates anthocyanin pigmentation of seed aleurone layer, and the P component confers pigmentation of the other plant parts. The S subcomplex contains two functional genes, S1 and S2 components. In the presence of Pl gene some alleles of R gene induce anthocyanin pigmentation of pericarp. In the present study, the effects of different R alleles on the anthocyanin pigmentation of pericarp in the presence of Pl gene were analyzed in order to identify the R gene component responsible for pericarp pigmentation. The results show that R-ch and r-ch alleles condition similar degrees of pericarp pigmentation, and that R-r:Ecuador (R-r:Ec) conditions stronger pigmentation. The r-ch allele, which is inferred that its S subcomplex has lost function but the P component is normal, induces pericarp pigmentation in the presence of Pl gene. On the contrary, the R-g:g1111 allele, derived from R-r:Ec and inferred that its S subcomplex functions normal but the P component has lost its function, did not induce pericarp pigmentation in the presence of Pl gene. Moreover, PCR analysis of genomic DNA's of R-ch and r-ch indicate that R-ch maintains both P and S1 components, whereas r-ch lacks for the S1 component. Taken together, The results suggest that the P components of R alleles inducing pericarp pigmentation in the presence of Pl gene are responsible for pericarp pigmentation.

Development of L-Threonine Producing Recombinant Escherichia coli using Metabolic Control Analysis (대사 조절 분석 기법을 이용한 L-Threonine 생산 재조합 대장균 개발)

  • Choi, Jong-Il;Park, Young-Hoon;Yang, Young-Lyeol
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.62-65
    • /
    • 2007
  • New strain development strategy using kinetic models and metabolic control analysis was investigated. In this study, previously reported mathematical models describing the enzyme kinetics of intracellular threonine synthesis were modified for mutant threonine producer Escherichia coli TF5015. Using the modified models, metabolic control analysis was carried out to identify the rate limiting step by evaluating the flux control coefficient on the overall threonine synthesis flux exerted by individual enzymatic reactions. The result suggested the production of threonine could be enhanced most efficiently by increasing aspartate semialdehyde dehydrogenase (asd) activity of this strain. Amplification of asd gene in recombinant strain TF5015 (pCL-$P_{aroF}$-asd) increased the threonine production up to 23%, which is much higher than 14% obtained by amplifying aspartate kinse (thrA), other gene in threonine biosynthesis pathway.

Evolutionary association learning for detecting higher-order interactions of DNA methylation regions in human diseases (인간 질병에서 DNA 메틸화 지역의 고차상호작용 탐색을 위한 진화적 연관관계 학습)

  • Rhee, Je-Keun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.420-422
    • /
    • 2012
  • DNA 메틸화는 후성유전학의 한 유형으로 유전자 발현을 조절하여 질병을 비롯한 다양한 생물학적 프로세스에 영향을 준다고 알려져 있다. 따라서 DNA 메틸화 정도와 인간 질병과의 연관성에 관한 연구는 질병의 원인 및 기전을 밝히고 메틸화 프로세스 조절을 통한 질병 치료 방법 개발을 위한 기반이 될 수 있다. 유전자 발현 조절 및 질병 발생은 많은 인자들의 복합적인 상호작용에 영향을 받으므로, 여러 위치에서의 메틸화 정도들의 고차원 조합을 이용한 질병과의 연관 관계 분석이 필수적이다. 본 연구에서는 진화 연산과 가중치 학습에 기반하여 유방암 발생과 연관되어 있는 메틸화 위치의 고차 상호작용을 탐색할 수 있는 방법을 제안한다.

Transcriptional Regulation of the Murine Dopamine Receptor Regulating Factor (DRRF) Gene (생쥐 도파민 수용쳬 조절인자 (DRRF) 유전자의 전사조절)

  • Kim Ok Soo;Lee Young-Choon;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.55-60
    • /
    • 2005
  • The murine dopamine receptor regulating factor (DRRF) gene is transcribed from a TATA-less promoter that has several putative Sp1 binding sites. The present investigation identifies functional transcription factors that modulate the expression of this gene, In the $D_2-expressing$ NB41A3 cells, Spl potently activates transcription from the DRRF promoter in pCAT-DRRF-1153/+17, but DRRF effectively inhibits it. Deletion of the 31 bp fragment between -1153 and -1122 decreased transcription down to about $60\%$. This fragment contains a functional API binding site. In addition, deletion of the 129 bp region between -901 and -772 further decreased transcription. The latter region has a functional AP2 binding site. Using a DRRF_AP1 (bases -1153 to -1121) probe, a specific retarded band was observed, and the unlabeled AP1 consensus competitor could effectively compete away this retarded band. In addition, using a DRRF_AP2 (bases -873 to -846), a specific retarded band was observed, and the unlabeled AP2 consensus competitor could effectively compete away this retarded band. The present observations suggest that Spl and DRRF regulate the DRRF promoter and that both API and AP2 also modulate this gene.

AMPK γ is Required for Maintaining Epithelial Cell Structure and Polarity (AMPK γ 유전자의 표피세포극성 유지기능 규명)

  • Koh, Hyong-Jong
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.621-626
    • /
    • 2011
  • AMP-activated protein kinase (AMPK), a heterotrimeric complex comprising a catalytic ${\alpha}$ subunit and regulatory ${\beta}$ and ${\gamma}$ subunits, has been primarily studied as a major metabolic regulator in various organisms, but recent genetic studies discover its novel physiological functions. The first animal model with no functional AMPK ${\gamma}$ subunit gene was generated by using Drosophila genetics. AMPK ${\gamma}$ flies demonstrated lethality with severe defects in cuticle formation. Further histological analysis found that deletion of AMPK ${\gamma}$ causes severe defects in cell polarity in embryo epithelia. The phosphorylation of nonmuscle myosin regulatory light chain (MRLC), a critical regulator of epithelial cell polarity, was also diminished in AMPK ${\gamma}$ embryo epithelia. These defects in AMPK ${\gamma}$ mutant epithelia were successfully restored by over-expression of AMPK ${\gamma}$. Collectively, these results suggested that AMPK ${\gamma}$ is a critical cell polarity regulator in metazoan development.

Glucocorticoid Regulation of Gene Expression in Hippocampal CA3 and Dentate Gyrus (글루코코티코이드 호르몬에 의한 뇌해마의 CA와 Dentate Gyrus 부분의 유전자 발현 변화)

  • Kim, Dong-Sub;Ahn, Soon-Cheol;Kim, Young-Jin;Park, Byoung-Keun;Ahn, Yong-Tae;Kim, Ji-Youn;Kyoji, Morita;Her, Song
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.305-311
    • /
    • 2007
  • Glucocorticoids (GCs) alter metabolism, synaptogenesis, apoptosis, neurogenesis, and dendritic morphology in the hippocampus. To better understand how glucocorticoids regulate these aspects of hippocampal biology, we studied gene expression patterns in the CA3 (Hippocampal pyramidal cell field CA3) and dentate gyrus (DG). Litter-matched Lewis inbred rats treated for 20 days with either 9.5 mg per day sustained-release corticosterone or placebo pellets were compared with high-density oligonucleotide microarray analysis (Rat Neurobiology U34 Arrays, Affymetrix). In placebo-treated rats, 32 genes were expressed at greater levels in CA3 than DG, whereas 3 genes were expressed at great levels in DC than CA3. Regional differences were also apparent in corticosterone-induced changes in the hippocampal transcriptome. Six genes in CA3 and 41 genes in DC were differentially regulated by corticosterone. As per the glucocorticoid effects on gene transcription in the brain, forty three of these genes were upregulated, and 4 genes were downregulated. Genes differentially expressed in hippocampus included those for 13 neurotransmitter proteins, 5 ion channel related proteins, 4 transcription factors, 3 neurotrophic factors, 1 cytokine, 1 apoptosis related protein, and 5 genes involved in synaptogenesis. Interestingly, GCs can have suppressive effects on brain BDNF mRNA transcription, one of the neurotrophic factors. These results indicate the diversity of targets affected by chronic exposure to corticosterone and highlight important regional differences in hippocampal neurobiology.

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors (체내 시계 유전자 PER1과 PER2의 종양억제자 기능)

  • Son, Beomseok;Do, Hyunhee;Kim, EunGi;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1225-1231
    • /
    • 2017
  • Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.

Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus (Cinnamon clownfish Amphiprion melnaopus의 이소토신 유전자 구조와 삼투압 조절이 미치는 영향)

  • Noh, Gyeong Eon;Choi, Mi-Jin;Min, Byung Hwa;Rho, Sum;Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.164-173
    • /
    • 2016
  • Isotocin (IT), a nonapeptide homolog of oxytocin in mammals, has been suggested to be involved in physiological processes including social behaviors, stress responses, and osmoregulation in teleost fish. To study its structure and function, the gene encoding the IT precursor was cloned from the genomic DNA and brain cDNA of the cinnamon clownfish, Amphiprion melanopus. The IT precursor gene consists of three exons separated by two introns, and encodes an open reading frame of 156 amino acid (aa) residues, comprising a putative signal peptide of 19 aa, a mature IT protein of 9 aa, a proteolytic processing site of 3 aa, and 125 aa of neurophysin. Tissue-specific analysis of the IT precursor transcript indicated its expression in the brain and gonads of A. melanopus. To examine its osmoregulatory effects, the salinity of the seawater (34 ppt) used for rearing A. melanopus was lowered to 15 ppt. Histological analysis of the gills indicated the apparent disappearance of an apical crypt on the surface of the gill lamella of A. melanopus, as pavement cells covered the surface upon acclimation to the lower salinity. The level of Na+/K+-ATPase activity in the gills was increased during the initial stage of acclimation, followed by a decrease to its normal level, suggesting its involvement in osmoregulation and homeostasis. The only slight increase in the level of IT precursor transcript in the A. melanopus brain upon low-salinity acclimation suggested that IT played a minor role, if any, in the process of osmoregulation.