• Title/Summary/Keyword: 조절 유전자

Search Result 1,375, Processing Time 0.021 seconds

Regulation of sfs1 gene expression by the cAMP-cAMP receptor protein (sfs1 유전자의 cAMP-cAMP receptor protein에 의한 발현 조절)

  • Yoo, Ju-Soon;Lee, Seung-Jin;Lee, Hee-Young;Chung, Soo-Yeol;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.195-199
    • /
    • 1996
  • We have cloned several E. coli sfs genes which stimulate mal gene expression with $crp^{{\ast}1}$). One the genes (pPVC2) was sequenced and potential CRP binding site is located in the upstream of the putative promoter in the regulatory region. In order to investigate the regulation of the sfs1 gene by the cAMP-CRP complex, we have constructed the sfs-lacZ fusion gene in this research. The overall transcriptional stimulations of sfs1 gene in the presence cAMP were confirmed by ${\beta}-galactosidase$ activity and Western blot analysis of sfs1-lacZ fusion gene. Transcriptional regulation by cAMP-CRP was also confirmed by Northern blot analysis. End-labelled DNA of the DNA fragment in sfs1 regulation region were used for gel retardation assay to examine the CRP-DNA complex in the presence of cAMP. Results here indicate that CRP binding site in the regulatory region of sfs1 gene is positive regulator for the expression of sfs1 gene.

  • PDF

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

Expression of GFP Gene Driven by the Olive Flounder (Paralichthys olivaceus) hsc70 Promoter in Trangenic Medaka (Oryzias latipes) (넙치 (Paralichthys olivaceus) 열충격 유전자 hsp70 조절부위에 의한 형광단백질의 발현)

  • Lee, Jeong-Ho;Kim, Jong-Hyun;Noh, Jae Koo;Kim, Hyun Chul;Kim, Woo-Jin;Kim, Young-Ok;Kim, Kyung-Kil
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • Heat shock proteins (HSPs) are a family of highly conserved proteins playing an important role in the functioning of unstressed and stressed cells. The HSP70 family, the most widely studied of the hsps, is constitutively expressed (hsc70) in unstressed cells and is also induced in response to stressors (hsp70), especially those affecting the protein machinery. The HSP/HSC70 proteins act as molecular chaperones and are crucial for protein functioning, including folding, intracellular localization, regulation, secretion, and protein degradation. Here, we report the identification and characterization of the putative amino acid sequence deduced from one cDNA clone identified as heat shock protein 70. The alignment showed that the putative sequence is 100% identical to the heat shock protein 70 cognate (HSC 70) of olive flounder. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene was cloned by genome walking and a putative core promoter region and transcription elements were identified. We characterized the promoter of the olive flounder hsc70 gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.

Local Expression of $Mel_{la}$ and Effect of Melatonin on Expression of PLP-A Gene in the Rat Placenta (흰쥐 태반에서의 $Mel_{la}$ 유전자 발현과 멜라토닌이 PLP-A 유전자 발현에 미치는 영향)

  • Shin, Chang-Sook;Lee, Chae-Kwan;Kang, Han-Seung;Kim, Haekwon;Yoon, Yong-Dal;Moon, Deog-Hwan;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.181-187
    • /
    • 2001
  • Seasonal changes and circadian rhythm of plasma prolactin(PRL) concentration in mammals are mediated by melatonin. Pinealectomy or denervation of the pineal gland produces an increase in plasma PRL level. In the rat placenta several members of the PRL family gene are expressed during the late pregnancy. However, the full spectrum of their expression mechanisms and regulatory factors are not elucidated yet. Present study aimed to investigate the local expression of the melatonin receptor la(Me $l_{la}$ ) gene and the effect of melatonin on expression of prolactin-like protein A(PLP-A), a member of the PRL-family gene in the rat placenta. According to the RT-PCR, northern blot and in situ hybridization experiments, Me $l_{la}$ gene was locally expressed in the rat placenta, Me $l_{la}$ mRNA was localized mainly in the placental junctional and labyrinth zones. Interestingly, junctional zone of the placenta showed strong expression of Me $l_{la}$ at daytime(16:00) than at nighttime(22:00). Melatonin agonist, chlorornelatonin decreased the PLP-A mRNA levels in the rat placenta. These results suggest that melatonin coupled with Me $l_{la}$ , may act as a regulation factor that mediates the expression of the PLP-A gene in the rat placenta.

  • PDF

Transcription Factor for Gene Function Analysis in Maize (옥수수 유전자 기능 분석을 위한 전사인자의 이해)

  • Moon, Jun-Cheol;Kim, Jae Yoon;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.263-281
    • /
    • 2014
  • Transcription factors are essential for the regulation of gene expression in plant. They are binding to either enhancer or promoter region of DNA adjacent to the gene and are related to basal transcription regulation, differential enhancement of transcription, development, response to intercellular signals or environment, and cell cycle control. The mechanism in controlling gene expression of transcription can be understood through the assessment of the complete sequence for the maize genome. It is possible that the maize genome encodes 4,000 or more transcription factors because it has undergone whole duplication in the past. Previously, several transcription factors of maize have been characterized. In this review article, the transcription factors were selected using Pfam database, including many family members in comparison with other family and listed as follows: ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, and WRKY family. For analyzing motifs, each amino acid sequence has been aligned with ClustalW and the conserved sequence was shown by sequence logo. This review article will contribute to further study of molecular biological analysis and breeding using the transcription factor of maize as a strategy for selecting target gene.

Association of Insulin-related Genes Expression with Carcass Weight in Loin Muscle of Korean Cattle (Hanwoo) (한우 등심조직 내 인슐린 조절 유전자의 발현이 도체중에 미치는 영향에 관한 연구)

  • Lim, Dajeong;Cho, Yong-Min;Chai, Han-Ha;Lee, Seung-Hwan;Choi, Bong-Hwan;Kim, Nam-Kuk
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • The peroxisome proliferator-activated receptor (PPAR) signaling pathway is well known as a candidate pathway related to meat quality in mammals. In particular, there are many studies on the relationship between the PPAR signaling pathway and intramuscular fat. However, recent studies have demonstrated that genes in the PPAR signaling pathway are associated with carcass weight in cattle. Among 48 genes in the PPAR signaling pathway, 16 genes are related to the insulin that regulates the adipocyte glucose metabolism and thus affects body weight. Therefore, we conducted an investigation to try to identify candidate genes associated with the carcass weight and relationships between the expressions of these 16 genes in the loin muscle of Hanwoo (Korean cattle). From regression analysis, the three genes (ACSL6, FADS2, and ILK) showed significant effects with regard to carcass weight (p<0.05). Finally, we analyzed the common regulators of the significant genes from pathway analysis. The significant genes are regulated by insulin as well as D-glucose. These findings show that the differentially expressed genes are possible candidate genes associated with carcass weight in the longissimus muscle of Korean cattle.

형질전환생쥐에서 1.7 kb 및 3.1 kb bovine $\beta$-casein promoter가 human type II collagen 유전자의 발현조절에 관한 분석

  • 나루세겐지;양정희;권혁빈;유승권;최윤재;박창식;진동일
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.89-89
    • /
    • 2003
  • 본 연구에서는 1.7kb 및 3.1kb bovine $\beta$-casein promoter의 유전자 발현 조절능력을 알아보기 위해 1 7kb 및 3.1kb bovine $\beta$-casein promoter에 human Type II Collagen 유전자를 연결해서 DNA microinjection으로 형질전환생쥐를 생산하였다. 총 8마리의 founder생쥐(1.7kb collagen : 5마리, 3.1kb collagen 3마리)를 생산하였고 이 founder생쥐와 wild type 생쥐를 mating시켜서 $F_1 및 F_2$ 새끼를 얻었다. $F_1 및 F_2$새끼들에서 human Type II collagen 유전자의 transmission rate는 약 50%로 Mendel의 법칙에 따라 분리되어 안정적으로 유전자가 염색체에 정착되어 있음을 확인하였다. 이들 $F_1 및 F_2$새끼 중 암컷들을 임신시켜 분만 후 5-10 일경에 유선조직을 포함하여 여러 조직으로부터 RNA를 추출하여 Northern blotting 및 RT-PCR 방법을 이용하여 Type II collagen mRNA의 발현을 분석하였다. 유선에서의 발현은 1 7 kb 및 3.1 kb line별로 각각 1 line씩 발현되지 않았고, 그 외 line에서는 모두 발현되는 것으로 확인되었다. 유선에서의 Type II collagen mRNA 발형양은 1.7 kb 및 3.1 kb bovine $\beta$-casein promoter사이에서는 큰 차이를 나타내지 않았으나 1.7 kb promoter 형질전환생쥐의 경우 유선 이외 조직에서도 발현되는 양상을 나타내었고, 3.1kb promoter line에서는 유선특이적으로 발현시키는 양상을 나타내었다. 그러므로 bovine $\beta$-casein promoter의 1.7 kb와 3.1 kb 사이에 유선특이적 발현을 유도하는 조절부위가 있을 것으로 추정된다.

  • PDF

Current Progress in Generation of Genetically Modified Mice (유전자 조작 마우스 개발의 최신 연구 동향)

  • Song, Ki-Duk;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.587-592
    • /
    • 2007
  • Manipulation of the mouse genome by activating or inactivating the gene has contributed to the understanding of the function of the gene in the subset of cells during embryonic development or postnatal period of life. Most of all, gene targeting, which largely depends on the availability of mouse embryonic stem (ES) cells, is the milestone of development of animal models for human disease. Recombinase-mediated genome modification (Cre-LoxP and Flp-Frt etc) and the ligand-dependent regulation system, more accurate and elaborate manipulation tools, have been successfully developed and applied to dissect the mechanisms governing complex biological processes and to understand the role of protein in temporal-and spatial aspects of development. As technologies concerning refined manipulation of mouse genome are developed, they are expected to open new opportunities to better understand the diverse in vivo functions of genes.

Detection of plcR-papR Genes by PCR in Identifying Enterotoxin Genes-Harboring Bacillus cereus Strains (장독소 유전자 함유 Bacillus cereus 확인을 위한 독소 전사 조절 유전자 plcR-papR의 PCR 검출법)

  • Yun, Suk-Hyun;Kim, Yong-Sang;So, Soon-Ku;Jeong, Do-Yeon;Hahn, Kum-Su;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • Identification of virulent Bacillus cereus strains was examined by PCR using primers specific for the detection of plcR-papR, which encode regulatory proteins controlling the transcription of virulence factors in B. cereus. Total 96 strains of B. cereus that carried at least one of diarrheal toxin genes including hblACD, nheABC, and cytK showed all positive PCR products, while other 48 Bacillus strains that lacked the toxin genes were plcRpapR-negative. This PCR method targeting the plcR-papR genes appears to be simple and effective in identifying the enterotoxin genes-harboring B. cereus strains.