• Title/Summary/Keyword: 조인 알고리즘

Search Result 939, Processing Time 0.03 seconds

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation (비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지)

  • LEE, EUN-JOO;KIM, YOUNG-TAEG;KIM, SONG-HAK;JU, HO-JEONG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.307-326
    • /
    • 2021
  • Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

Possibility for Early Detection on Crop Water Stress Using Plural Vegetation Indices (작물 가뭄스트레스 조기탐지 가능성 타진을 위한 서로 다른 종류의 식생지수 활용)

  • Moon, Hyun-Dong;Jo, Euni;Cho, Yuna;Kim, Hyunki;Kim, Bo-kyeong;Lee, Yuhyeon;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1573-1579
    • /
    • 2022
  • The irrigation schedule system using early detection of crop water stress is required to maintain crop production and save water resource. However, because previous studies focused on the crop under stress dominant condition, the crop physiological properties, which can be measured by remote sensing technique, on early crop water stress condition are not well known. In this study, the canopy temperature, MERIS Terrestrial Chlorophyll Index (MTCI), and Chlorophyll/Carotenoid Index (CCI) are observed on the soybeans given the early water stress using thermal imaging camera and hyperspectral camera. The increased canopy temperature and decreased MTCI are consist with the previous studies which are for the crop of stress dominant-sign. However, the CCI was increased contrary to expectation because it may faster the reduction of carotenoid than chlorophyll in early stage. These behaviors will be useful to not only develop the irrigation system but also using the early detection of crop stress.

An Accurate Cryptocurrency Price Forecasting using Reverse Walk-Forward Validation (역순 워크 포워드 검증을 이용한 암호화폐 가격 예측)

  • Ahn, Hyun;Jang, Baekcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.45-55
    • /
    • 2022
  • The size of the cryptocurrency market is growing. For example, market capitalization of bitcoin exceeded 500 trillion won. Accordingly, many studies have been conducted to predict the price of cryptocurrency, and most of them have similar methodology of predicting stock prices. However, unlike stock price predictions, machine learning become best model in cryptocurrency price predictions, conceptually cryptocurrency has no passive income from ownership, and statistically, cryptocurrency has at least three times higher liquidity than stocks. Thats why we argue that a methodology different from stock price prediction should be applied to cryptocurrency price prediction studies. We propose Reverse Walk-forward Validation (RWFV), which modifies Walk-forward Validation (WFV). Unlike WFV, RWFV measures accuracy for Validation by pinning the Validation dataset directly in front of the Test dataset in time series, and gradually increasing the size of the Training dataset in front of it in time series. Train data were cut according to the size of the Train dataset with the highest accuracy among all measured Validation accuracy, and then combined with Validation data to measure the accuracy of the Test data. Logistic regression analysis and Support Vector Machine (SVM) were used as the analysis model, and various algorithms and parameters such as L1, L2, rbf, and poly were applied for the reliability of our proposed RWFV. As a result, it was confirmed that all analysis models showed improved accuracy compared to existing studies, and on average, the accuracy increased by 1.23%p. This is a significant improvement in accuracy, given that most of the accuracy of cryptocurrency price prediction remains between 50% and 60% through previous studies.

A Study on the Comparison of Detected Vein Images by NIR LED Quantity of Vein Detector (정맥검출기의 NIR LED 수량에 따른 검출된 정맥 이미지 비교에 관한 연구)

  • Jae-Hyun, Jo;Jin-Hyoung, Jeong;Seung-Hun, Kim;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.485-491
    • /
    • 2022
  • Intravenous injection is the most frequent invasive treatment for inpatients and is widely used for parenteral nutrition administration and blood products, and more than 1 billion procedures are used for peripheral catheter insertion, blood collection, and other IV therapy per year. Intravenous injection is one of the difficult procedures to be performed only by trained nurses with intravenous injection training, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Accordingly, studies on auxiliary equipment capable of visualizing the vein structure of the back of the hand or arm are being published to reduce errors during intravenous injection. This study is a study on the performance difference according to the number of LEDs irradiating the 850nm wavelength band on a vein detector that visualizes the vein during intravenous injection. Four LED PCBs were produced by attaching NIR filters to CCD and CMOS camera lenses irradiated on the skin to acquire images, sharpen the acquired images using image processing algorithms, and project the sharpened images onto the skin. After that, each PCB was attached to the front end of the vein detector to detect the vein image and create a performance comparison questionnaire based on the vein image obtained for performance evaluation. The survey was conducted on 20 nurses working at K Hospital.

Development of PSC I Girder Bridge Weigh-in-Motion System without Axle Detector (축감지기가 없는 PSC I 거더교의 주행중 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.673-683
    • /
    • 2008
  • This study improved the existing method of using the longitudinal strain and concept of influence line to develop Bridge Weigh-in-Motion system without axle detector using the dynamic strain of the bridge girders and concrete slab. This paper first describes the considered algorithms of extracting passing vehicle information from the dynamic strain signal measured at the bridge slab, girders, and cross beams. Two different analysis methods of 1) influence line method, and 2) neural network method are considered, and parameter study of measurement locations is also performed. Then the procedures and the results of field tests are described. The field tests are performed to acquire training sets and test sets for neural networks, and also to verify and compare performances of the considered algorithms. Finally, comparison between the results of different algorithms and discussions are followed. For a PSC I-girder bridge, vehicle weight can be calculated within a reasonable error range using the dynamic strain gauge installed on the girders. The passing lane and passing speed of the vehicle can be accurately estimated using the strain signal from the concrete slab. The passing speed and peak duration were added to the input variables to reflect the influence of the dynamic interaction between the bridge and vehicles, and impact of the distance between axles, respectively; thus improving the accuracy of the weight calculation.

Statistical Method and Deep Learning Model for Sea Surface Temperature Prediction (수온 데이터 예측 연구를 위한 통계적 방법과 딥러닝 모델 적용 연구)

  • Moon-Won Cho;Heung-Bae Choi;Myeong-Soo Han;Eun-Song Jung;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • As climate change continues to prompt an increasing demand for advancements in disaster and safety management technologies to address abnormal high water temperatures, typhoons, floods, and droughts, sea surface temperature has emerged as a pivotal factor for swiftly assessing the impacts of summer harmful algal blooms in the seas surrounding Korean Peninsula and the formation and dissipation of cold water along the East Coast of Korea. Therefore, this study sought to gauge predictive performance by leveraging statistical methods and deep learning algorithms to harness sea surface temperature data effectively for marine anomaly research. The sea surface temperature data employed in the predictions spans from 2018 to 2022 and originates from the Heuksando Tidal Observatory. Both traditional statistical ARIMA methods and advanced deep learning models, including long short-term memory (LSTM) and gated recurrent unit (GRU), were employed. Furthermore, prediction performance was evaluated using the attention LSTM technique. The technique integrated an attention mechanism into the sequence-to-sequence (s2s), further augmenting the performance of LSTM. The results showed that the attention LSTM model outperformed the other models, signifying its superior predictive performance. Additionally, fine-tuning hyperparameters can improve sea surface temperature performance.

Research on Training and Implementation of Deep Learning Models for Web Page Analysis (웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구)

  • Jung Hwan Kim;Jae Won Cho;Jin San Kim;Han Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.517-524
    • /
    • 2024
  • This study aims to train and implement a deep learning model for the fusion of website creation and artificial intelligence, in the era known as the AI revolution following the launch of the ChatGPT service. The deep learning model was trained using 3,000 collected web page images, processed based on a system of component and layout classification. This process was divided into three stages. First, prior research on AI models was reviewed to select the most appropriate algorithm for the model we intended to implement. Second, suitable web page and paragraph images were collected, categorized, and processed. Third, the deep learning model was trained, and a serving interface was integrated to verify the actual outcomes of the model. This implemented model will be used to detect multiple paragraphs on a web page, analyzing the number of lines, elements, and features in each paragraph, and deriving meaningful data based on the classification system. This process is expected to evolve, enabling more precise analysis of web pages. Furthermore, it is anticipated that the development of precise analysis techniques will lay the groundwork for research into AI's capability to automatically generate perfect web pages.

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.