DOI QR코드

DOI QR Code

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition

가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립

  • Pak, JaeIn (College of Animal Life Science, Kangwon National University) ;
  • Ra, Jae In- (College of Animal Life Science, Kangwon National University)
  • 박재인 (강원대학교 동물생명과학대학) ;
  • 라창식 (강원대학교 동물생명과학대학)
  • Published : 2008.08.01

Abstract

Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

다양한 조건하에서 가축분뇨처리공정을 운전하면서 각 자동제어 인자의 반응을 분석하고 ORP, DO, pH(mV)-time profile를 이용한 자동제어 신뢰성을 평가하였다. 또한 무산소 조건에서의 잔존 유기물 및 미생물 자기산화에 의한 탈질율을 고려한 적정 외부탄소원 공급량 지표를 파악하였다. 실험은 45L의 유효용적을 지닌 실험실 규모의 SBR 공정을 이용하여 수행되었다. ORP-와 pH(mV)-, DO-time profile 상에서 완전질산화를 의미하는 NBP가 뚜렷하게 발현하던 중 NH4-N의 낮은 부하와 고농도 NOx-N 함유 폐수의 유입 및 불충분한 무산소 조건 제공이 이루어졌을 때 ORP-와 DO-time profile 상에서 NBP가 사라지기 시작하였으며 NOx-N의 지속적인 증가에 의해 ORP 값의 민감성이 둔화되기 시작하였다. 그러나 pH(mV)-time profile은 항상 일정한 변화패턴을 유지하면서 암모니아성 질소의 완전 질산화가 이루어졌을 때 뚜렷한 NBP를 발현하였다. NOx-N/NH4-N의 비가 80:1 수준까지 높아지는 조건하에서도 pH(mV)- time profile상에서의 이러한 안정적 NBP의 발현은 지속되었으며 발현되는 NBP는 MSC(Moving Slope Change)의 변화 패턴을 추적함에 의해 인식되도록 프로그램 할 수 있었다. pH(mV)-time profile에서의 NBP의 발현과 MSC를 이용한 자동제어시점 인식은 반응조내 NOx-N 농도가 무려 300mg/L 이상의 수준에서도 안정적이었다. 유기물 농도에 따른 자동제어 인자의 반응을 분석한 시험에서도 반응조내 유기물의 농도가 STOC 기준 약 10,000mg/L 수준으로 증가함에도 불구하고 pH(mV)-time profile 상에서의 이러한 NBP 발현은 지속되었으며 고농도 유기물 축적 하에서도 동일한 자동제어 알고리즘이 이용될 수 있음을 알 수 있었다. 잔존 유기물과 미생물 자기산화에 의한 탈질율은 약 0.4mg/L.hr로 분석되었으며 안전지수 0.1을 도입하여 산출된 NOx-N 기준 적정 외부탄소원 공급량은 0.83 STOC/NOx-N으로 파악되었다.

Keywords

References

  1. 김원용, 정재현, 라창식. 2004. 생물학적 축산폐수 처리공정의 자동제어 방법 및 제어인자의 안정성. 동물자원과학회지, 46(2):251-260
  2. Akin, B. S. and Ugurlu, A. 2005. Monitoring and control of biological nutrient removal in a sequencing batch reactor, Process Biochemistry, 40:2873-2878 https://doi.org/10.1016/j.procbio.2005.01.001
  3. Chen, K. C., Chen, C. Y., Peng, J. W. and Houng, J. Y. 2002. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP, Wat. Res., 36:230-238 https://doi.org/10.1016/S0043-1354(01)00201-9
  4. Kim, J. H., Chen, M., Kishida, N. and Sudo, R. 2004. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing bstch reactors. Wat. Res., 38:3340-3348 https://doi.org/10.1016/j.watres.2004.05.006
  5. Kishida, N., Kim, J., Chen, M., Sasaki, H. and Sudo, R. 2003. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors, Bioscience and bioengineering, 96(3):285-290 https://doi.org/10.1016/S1389-1723(03)80195-0
  6. Marsili, L. S. 2006. Control of SBR switching by fuzzy pattern recognition. Wat. Res., 40:1095-1107 https://doi.org/10.1016/j.watres.2006.01.011
  7. Peng, Y. Z., Ma, Y. and Wang, S. Y. 2006. Improving nitrigen removal using on-line sensors in the A/O process, Biochemical Eng., 31:48-55 https://doi.org/10.1016/j.bej.2006.05.023
  8. Ra, C. S., Lo, K. V., Shin, J. S., Oh, J. S. and Hong, B. J. 2000. Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Wat. Res., 34(3):965-973 https://doi.org/10.1016/S0043-1354(99)00189-X
  9. Ra, C. S., Lo, K. V. and Mavinic, D. S. 1999. Control of a swine manure treatment process using a specific feature of oxidation reduction potential, Bioresource technology, 70:117-127 https://doi.org/10.1016/S0960-8524(99)00035-8
  10. Ra, C. S., Lo, K. V. and Mavinic, D. S. 1998. Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater. Environmental Techology., 19:343-356 https://doi.org/10.1080/09593331908616690
  11. Yu, R. F., Liaw, S. L., Chang, C. N., Lu, H. J. and Cheng, W. Y. 1997. Monitoring and control using on-line ORP on the continuous flow activated sludge batch reactor system, Wat. Sci. Tech., 35(1):57-66
  12. Zhang, Z., Zhu, J., King, J. and Li, W. 2006. A two-step SBR for treating swine manure, Process Biochemistry, 41:892-900 https://doi.org/10.1016/j.procbio.2005.11.005