• Title/Summary/Keyword: 조암광물

Search Result 49, Processing Time 0.021 seconds

Material Characteristics and Deterioration Diagnosis of the Pagoda of Buddhist Priest Jeongjin in Bongamsa Temple, Mungyeong, Korea (문경 봉암사 정진대사원오탑의 재질특성과 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Han, Byeong-Il
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • The Bongamsa Jeongjindaesa Wonotap Pagoda (Treasure No. 171) constructed in the 10th century composed mainly of leucocratic granite with feldspar phenocryst. The major rock-forming minerals are quartz, orthoclase, plagioclase and some biotite. This pogoda is highly damaged physical weathering which are break-out, flakes, exfoliation and cracks. As a result of the infrared thermography on the surface of the pagoda, internal exfoliations occurred to cracks. Also, P-XRF analysis showed that Fe, S, Ca and Mn of concentration were so high in the discoloration parts. The coated part of red pigment has a high five times in Fe content than the fresh rock surface. This result suggests that material of red pigment is hematite. Ultrasonic velocity of the stone properties were from 831 to 2,457 m/s, but it measured velocity of less than 1,000m/s in part of damaged area. Therefore, we suggest for safety conservation for weathered parts of the pagoda, that is in want of rejoin and consolidation treatment about serious damage parts.

Characteristics of Surface Deterioration and Materials for Stone Guardian and Stone Memorial Tablets from Muryeong Royal Tomb of Baekje Kingdom in Ancient Korea (백제 무령왕릉 석수와 지석의 재질 및 표면손상 특성)

  • Park, Jun Hyoung;Lee, Chan Hee;Choi, Gi Eun
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.241-254
    • /
    • 2017
  • The Stone Guardian and Memorial Tablets from the Muryeong Royal Tomb are composed of the same kind of plutonic igneous rocks, the so-called hornblendite. Color of the rocks show greenish gray, and both of them occurred with medium-grained granular texture. The rock-forming minerals composed mainly of amphibole and plagioclase. Magnetic susceptibility of the Stone Guardian is 0.15 to 0.63 (mean $0.42{\times}10^{-3}SI\;unit$), the King's Stone Memorial Tablet is 0.11 to 0.38 (mean $0.24{\times}10^{-3}SI\;unit$) and the Queen's Stone Memorial Tablet ranges from 0.10 to 0.33 (mean $0.18{\times}10^{-3}SI\;unit$). The rocks of the artifacts are hard to find in the Gongju area. Large scaled out crop of hornblendite is not distributed, but found in many places that the form of dike. The lithology and occurrences indicate that the artifacts are made of plutonic rock rather than dike. Reddish brown and pale brown contaminants, are also distributed on the surface of the Stone Guardian and Memorial Tablets. The reddish brown color is due to Fe oxide, and the pale brown color occurs due to the elution of Ca. The reddish brown contaminants are influenced by the internal components of the rock and oxidation of burial iron accessories. In contrast, the pale brown contaminants are considered to have flown from the carbonate materials used in the Royal Tomb, with a little added Fe oxide. Physical and chemical deterioration operate intricately in the Stone Guardian and Memorial Tablets. Physical deterioration is extremely rare and chemical deterioration is stable except for a part of the Stone Guardian and the front of the Queen Stone Memorial Tablet.

Petrology of Jurassic Granitoids in the Hamyang-Geochang Area, Korea (함양(咸陽)-거창(居昌) 지역(地域), 쥬라기 화강암류(花崗岩類)의 암석학적(岩石學的) 연구(硏究))

  • Lee, Cheol-Lag;Lee, Yoon-Jong;Hayashi, Masao
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.447-461
    • /
    • 1992
  • The Jurassic granitoids in the study area are divided into the "Gneissose granodiorite" and the "Daebo granodiorite" (1 : 250,000 Jeonju Geological map, 1973). The term of Geochang granodiorite was used in this study instead of "Daebo granodiorite". These granitoids were studied in terms of microscopic observation, petrochemistry, and zircon morphology. The granitoids are mostly granodiorite. Two kinds of progressive variation can also be recognized in the modal quartz~alkali feldspar~plagioclase triangular diagram; the Gneissose granodiorite is in accordance with the trondhjemitic (low k) trend, and the Geochang granodiorite with the granodioritic trend (medium k). The granitoids belong to the calc-alkaline series, and are classified into the I-type (magnetite series). Plagioclase ($An_{25.1}{\sim}An_{30.9}$) in the granitoids shows generally an oligoclase composition. Biotite has a wider range in (Si, Al) solution than in (Fe, Mg) solid solution. Hornblende occurs in a few thin sections of the Geochang granodiorite, and is plotted in the tschermakite field. The zircon prism shows a long variation between the {110} dominant type and the {100} dominant type in the Geochang granodiorite, but only the {110}={100} type in the Gneissose granodiorite. However, zircon crystals in the granitoids are mostly crystallized in a low-to-medium temperature magma. In the PPEF (Prism- Pyramid-Elongation-Flatness) diagram, the Gneissose granodiorite shows a closed scissors type, the Geochang granodiorite, a opened scissors type. It indicates that the Geochang granodiorite might originate from the mixed magma with crustal materials or pre-existed residual magma which had formed the Gneissose granodiorite.

  • PDF

Analysis on Material Characteristics of Restored Areas with Mortar and Basis of Surface Deterioration on the Stupa of State Preceptor Jigwang from Beopchensaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑 복원부 모르타르 재료학적 특징 및 표면손상 기초 해석)

  • Chae, Seung A;Cho, Ha Jin;Lee, Tae Jong
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.411-425
    • /
    • 2021
  • The Stupa of State Preceptor Jigwang from Beopcheonsa Temple Site in Wonju (National Treasure) is a representative stupa of the Goryeo Dynasty, with outstanding Buddhist carvings and splendid patterns, clearly indicating its honoree and year of construction. However, it was destroyed by bombing during the Korean War (1950-1953) and repaired and restored with cement and reinforcing bars in 1957. The surface condition of the original stone shows long-term deterioration due to the m ortar used in past restorations. In order to identify the exact causes of deterioration, the m ortar and surface contaminants on the original stone were analyzed. Portlandite, calcite, ettringite, and gypsum from the mortar were identified, and its ongoing deterioration was observed through pH measurements and the neutralization reaction test. Analysis of surface contaminants identified calcite and gypsum, both poorly water-soluble substances, and their growth in volume among rock-forming minerals was observed by microscopy. Based on those results, semi-quantitative analysis of Ca and S contents significantly influencing the formation of salt crystals was conducted using P-XRF to analyze the basis of surface deterioration, and cross-validation was performed by comparing the body stone affected by the mortar and the upper stylobate stone unaffected by the mortar. Results indicate that the elements are directly involved in the surface deterioration of the body stone.

Directional Variation of Apparent Elastic Constants and Associated Constraints on Elastic Constants in Transversely Isotropic Rocks (횡등방성 암석에서 겉보기 탄성정수의 방향성 변화와 탄성정수 제약조건)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.150-168
    • /
    • 2023
  • The anisotropic behavior of rocks is primarily attributed to the directional arrangement of rock-forming minerals and the distribution characteristics of microcracks. Notably, sedimentary and metamorphic rocks often exhibit distinct transverse isotropy in terms of their strength and deformation characteristics. Consequently, it is crucial to gain accurate insights into the deformation and failure characteristics of transversely isotropic rocks during rock mechanics design processes. The deformation of such rocks is described by five independent elastic constants, which are determined through laboratory testing. In this study, the characteristics of the directional variation of apparent elastic constants in transversely isotropic rocks were investigated using experimental data reported in the literature. To achieve this, the constitutive equation proposed by Mehrabadi & Cowin was introduced to calculate the apparent elastic constants more efficiently and systematically in a rotated Cartesian coordinate system. Four transversely isotropic rock types from the literature were selected, and the influence of changes in the orientation of the weak plane on the variations of the apparent elastic modulus, apparent shear modulus, and apparent Poisson's ratio was analyzed. Based on the investigation, a new constraint on the elastic constants has been proposed. If the proposed constraint is satisfied, the directional variation of the apparent elastic constants in transversely isotropic rocks aligns with intuitive predictions of their tendencies.

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea (부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인)

  • Choo, Chang-Oh;Hamm, Se-Yeong;Lee, Jeong-Hwan;Lee, Chung-Mo;Choo, Youn-Woo;Han, Suk-Jong;Kim, Moo-Jin;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.67-81
    • /
    • 2012
  • The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

Interpretation of Surface Contamination and Genesis on the Stupa of the State Preceptor Jigwang from the Beopcheonsaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑의 표면오염 및 성인 해석)

  • Kang, San Ha;Lee, Ju Mok;Lee, Gyu Hye;Kim, Sa Duk;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.211-225
    • /
    • 2018
  • The Stupa of the State Preceptor Jigwang from the Beopcheonsaji temple site in Wonju (National Treasure No. 101) was built in the Goryeo Period (around the 11th century), with very excellent style and techniques. It was returned to the Korea after being taken to Osaka of Japan without notice in 1912, and was severely damaged during the Korean War. Subsequently, the Stupa was restored using restoration materials like mortar, and relocated to the National Palace Museum of Korea. Surface contaminants in the Stupa primarily existed around the restoration materials. Black discoloration, which indicates a high discoloration grade, signified a high possession rate in the north and inner regions of the Stupa, which may be related to the relative moisture maintenance time. Most surface contaminants were calcite and gypsum; the black discoloration area underwent secondary discoloration due to air pollution. Moreover, the stone properties exhibited a relatively low discoloration grade, exhibiting crystallized contaminants that partly covered the rock-forming minerals. Overall, the Stupa deteriorated due to discoloration and being covered by lime materials, which were dissolved as the mortar degraded. Hence, it required contaminants removal, surface cleaning and desalination during conservation treatment, in order to control the rate of physicochemical deterioration by contaminants.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.