• Title/Summary/Keyword: 조생종

Search Result 183, Processing Time 0.025 seconds

Evaluation of Resistance to Rice Sheath Blight (Rhizoctonia solani Kühn) of Rice Germplasms at Seedling Stage (유묘접종에 의한 벼 유전자원의 벼잎집무늬마름병 저항성 평가)

  • Kim, Jeong-Ju;Baek, Man-Kee;Won, Yong-Jae;Cho, Young-Chan;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.376-382
    • /
    • 2013
  • Rice sheath blight (ShB), caused by Rhizoctonia solani K$\ddot{u}$hn, is one of the serious fungal disease resulting in severe yield loss in rice field worldwide. There are limited sources of genetic resistance and no commercial cultivar with high level of ShB resistance is currently available in Korea. In order to seek available resources with high level of resistance to ShB, 40 rice germplasms were used to evaluate disease reactions including ShB, leaf blast and bacterial leaf blight and these germplasms also examined agronomic traits such as days to heading, culm length, panicle length, No. of panicles, No. of spikelets per panicle and so on. There is wide variation in agronomic characters and disease reactions. Rice germplasms also showed considerably different ShB reaction caused by inoculation at seedling stage. Areumbyeo, Gayabyeo, IR579-Es44 and IR64 showed more strong reaction to ShB than the others. Especially, Gayabyeo is considerably available to develop a new variety with resistance to ShB in Korea.

A Study on the Rice Protein (Fractionation of the Protein of Korean Rice by Paper Electrophoresis) (쌀단백질(蛋白質)에 관(關)한 연구(硏究) (여지전기영동법(濾紙電氣泳動法)에 의(依)한 쌀단백질(蛋白質)의 획분(劃分)))

  • Lee, Chun-Yung;Byun, Si-Myung;Lee, Hong-Won;Kim, Soo-Young
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.15-21
    • /
    • 1968
  • In order to fractionate the rice protein employing paper electrophoresis, 9 subjects of Korean rice and one Indica type, Pin Galw 50 were examined, the results were as follows. 1. Polished rice protein was separated into albumin, globulin, prolamine, and oryzenin. The amount of these fractions was determined by Kjeldahl method showing respectively 0.26%, 0.65%, 0.41%, and 5.01% in average. Albumin was extracted with deionized water, globulin with 10% NaCl, prolamine with 70% ethanol, and oryzenin with 0.05N-NaOH. 2. Albumin was extracted with deionized water and dialyzed by a cellophan tube. The supernatant was submitted to paper electrophoresis using phosphate buffer (pH 7.6, ${\mu}$ 0.18). Albumin was identified as monocomponent in all of 10 varieties under study. Globulin was extracted and dialyzed to remove the albumin. The precipitates were resolved in 10% saline solution and examined by paper electrophoresis. The globulin consists of two components in phosphate buffer(pH 7.6, ${\mu}$ 0.18) Any subject, regardless the origin, appears to contain globulin I and globulin II. Prolamine was extracted with 70% ethanol, dialayzed against deionized water, resolved with ethanol, and analyzed by Paper electrophoresis. It was proved as one component in the 70% alcoholic buffer(pH 9.0, ${\mu}$=0.0095). On the contrary, paper electrophoresis with oryzenin demonstrated two or three components in Sorensen's buffer(pH 13.0, ${\mu}$ 0.11). Yookoo 132, Dungpan 5, Kwansan, and Jaekun contain oryzenin I, oryzenin II, and oryzenin III. On the other hand, Paldal, Jinheung, Sukwang, Eunbangzu, Damakum, and Pin Galw 56 contain only oryzenin II, and oryzenin III. On the basis of these analyses a discussion of the differences between the protein fractions of 10 varieties was presented. 3. Globulin I varied from 0.22% to 0.46% (aver. 0.35%) in the amount, globulin II from 0.21 to 0.44%(aver. 0.32%), oryzenin I from 0.17% to 0.44%(aver. 0.3%), oryzenin II from 1.59% to 2.88%(aver. 2.23%), and oryzenin III from 2.02% to 3.57%(aver. 2.66%).

  • PDF

Study of the Use of Winter Forage Crops, Early Maturing Rice and Summer Oats in Triple Cropping Systems at Paddy Field in Southern Region (남부지역 논에서 사료맥류, 조생종 벼 및 하파귀리를 활용한 삼모작 작부체계 연구)

  • Song, Tae-Hwa;Park, Tae-Il;Park, Hyong-Ho;Cho, Sang-Kyun;Oh, Young-Jin;Jang, Yun-Woo;Rho, Jea-Hwan;Park, Kwang-Geun;Kang, Hyeon-Jung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.227-233
    • /
    • 2014
  • This experiment was undertaken to develop triple cropping systems for winter cereal crops for forage, early maturing rice and oats, and to select a winter forage crop in order to determine rice transplanting time at paddy fields in the southern region. Also, the productivity and feed value of the resulting forage crops were examined. When winter cereal crops used for forages are first harvested at the early maturing rice transplanting period, and again harvested during the winter forage crop harvesting period, the fresh yield and dry matter yield of rye were 32.0, 42.3 ton/ha and 5.8, 16.5 ton/ha, respectively, demonstrating higher yields than other winter crops. The early maturing rice, 'Jopyeong', transplanted on June 4 had a lower percentage of ripened grain compared to those transplanted on May 6, and milled rice yield transplanted on June 4 was also decreased by 22%. Thus, the results showed that early transplanting was profitable. Regarding the oats grown during the fall cropping season, the heading date for the oats sown first was on October 10, but the heading was not observed in those sown later. Dry matter yield and TDN yield of the second sowing was less than 50% compared to the first. Consequently, rye may be the most suitable winter forage crop for triple cropping systems. Early transplanting of 'Jopyeong' after rye harvesting before April 30 in addition to timely sowing of oats in the fall season would be profitable for rice and forage production using triple cropping systems in the southern region.

Variation of rachis branches in rice varieties with different maturing types by various planting times. (벼 작기이동에 따른 조만성별 수상의 착생변이)

  • 심재성
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 1996
  • This experiment was conducted to investigate the variation of adhering primary and secondary rachis branches of panicle in three ecotypes at National Honam Agricultural Experiment Station in 1993. Three ecotypes. Odaebyeo and Sinunbongbyeo as early-maturing type, Cheongmyeongbyeo and Changanbyeo as medium, and Dongjinbyeo and Mangeumbyeo as late-maturing type were used. The treatment were 5 planting times from May 5 to 5 July by 15 day intervals. The number of primary rachis branch in early maturing type recorded high in between May 5 and 20 May as early transplanting. Medium and late-maturing type, however, was found to be have more primary rachis branches at the late time of June 20 transplanting than at the optimum transplanting of Honam area. The number of secondary rachis branch was high between June 5 and 20 June regardless ecotypes. The rate of secondary rachis branch per primary rachis branch was increased with later transplanting time up to June 5, but showed no differences onwards. The number of grain in primary and secondary rachis branches were low in transplanting time of May 5 regardless ecotype but high in late transplanting time by July 5. Densinty of seed sets was found to be higher in late transplanting than in early transplating;early-maturing type showed high in July 5 and 20 June in medium-late maturing type respectively.

  • PDF

A New Early Maturing Rice Cultivar "Junamjosaeng" with Multiple Disease Resistance and High Grain Quality Traits (고품질 복합내병성 조생종 벼 신품종 "주남조생")

  • Lee, Jong-Hee;Yeo, Un-Sang;Lee, Jeom-Sik;Kang, Jong-Rae;Kwak, Do-Yeon;Park, Dong Soo;Cho, Jun-Hyeon;Song, You-Chun;Park, No-Bong;Kim, Choon-Song;Yi, Gi-Hwan;Lim, Sang-Jong;Oh, Byeong-Geun;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Junamjosaeng is a new japonica rice cultivar developed in 2006 from a cross between Milyang165*3 and Koshihikari at the Department of Functional Crop Science, NICS, RDA. This cultivar is suitable for the double cropping system (i. e., before and after the cash crop). Heading date of Junamjosaeng is 6 days earlier than Keumobyeo under the late transplanting cultivation on July 10. It has a high grain fertility under cold conditions and low premature heading. One of the distinguishing characteristics of this variety is its resistance to major diseases like leaf blast, bacterial blight races ($K_1$, $K_2$, $K_3$) and rice stripe virus disease. However, it showed susceptibility to major insect pests. Milled rice kernels are translucent with non glutinous endosperm and have 6.7% protein and 19.8% amylose contents. Milling recovery of head rice is 75.7%. The palatability of cooked rice is better than Keumobyeo. The milled rice yield of Junamjosaeng in local adaptability tests after harvest of the cash crop was $4.43\;tons\;ha^{-1}$. This cultivar is suitable for planting in the plain paddy fields of Honam and Yeonnam regions in Korea.

Growth at Heading Stage of Rice Affected by Temperature and Assessment of the Target Growth Applicable to North Korea for Breeding in South Korea (기온에 따른 벼 출수기 생육 반응 및 남한에서 북한 적응 품종 육성을 위한 출수기 목표 생장량 추정)

  • Yang, Woonho;Choi, Jong-Seo;Lee, Dae-Woo;Kang, Shingu;Lee, Seuk-ki;Chae, Mi-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.108-121
    • /
    • 2021
  • Field studies at Suwon, Cheorwon, and Jinbu were carried out to determine the relationship between mean temperature from transplanting to heading (MT) and growth at heading stage of rice. P lant height (P H) and dry weight (DW) at heading stage were significantly correlated with MT, showing second degree polynomials. The optimal temperatures for PH and DW were 23.2 ℃ and 22.8 ℃, respectively. Little differences in rice growth among soils collected from the experimental sites and the temperature-response in a phytotron study supported that MT was the main determinant of the growth shown in the field study. Though number of days to heading increased as MT decreased, cumulative temperatures (CT) affected by sites and MT for given varieties were fairly constant. When applying specific CT for each of the varieties to the temperature in North Korea, (1) five regions (Kaesong, Haeju, Sariwon, Nampo, Pyongyang) were suitable for early to mid-maturing varieties and (2) 14 regions (Yongyon, Singye, Anju, Kusong, Sinuiju, Changjon, Wonsan, Hamhung, Pyonggang, Yangdok, Huichon, Supung, Sinpo, Kanggye) were suitable only for early-maturing varieties. In (1) regions, the similar extent of growth with that in Suwon could be achieved when mid-maturing varieties grown in Suwon are cultivated. Among (2) regions, early-maturing varieties are expected to demonstrate the similar extent of growth with that in Cheorwon in 9 regions except Hamhung, Kanggye, Pyonggang, Yangdok, and Sinpo. For Hamhung and Kanggye, the target PH was assessed as 4cm higher than that shown in Cheorwon. P lant height of 8-14cm and DW of 2-4g per hill greater than those shown in Cheorwon were the target growth for P yonggang, Yangdok, and Sinpo to attain the similar amount of growth with that in Cheorwon. It is suggested that rice varieties for North Korea could be bred by adjusting the target growth at the breeding sites in South Korea.