• Title/Summary/Keyword: 조명 정규화

Search Result 84, Processing Time 0.023 seconds

Development of an Edge-based Point Correlation Algorithm Avoiding Full Point Search in Visual Inspection System (전탐색 회피에 의한 고속 에지기반 점 상관 알고리즘의 개발)

  • Kang, Dong-Joong;Kim, Mun-Jo;Kim, Min-Sung;Lee, Eung-Joo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.327-336
    • /
    • 2004
  • For visual inspection system in real industrial environment, it is one of most important tasks to design fast and stable pattern matching algorithm. This paper presents an edge-based point correlation algorithm avoiding full search in visual inspection system. Conventional algorithms based on NGC(normalized gray-level correlation) have to overcome some difficulties for applying to automated inspection system in factory environment. First of all, NGC algorithms need high time complexity and thus high performance hardware to satisfy real-time process. In addition, lighting condition in realistic factory environments if not stable and therefore intensity variation from uncontrolled lights gives many roubles for applying directly NGC as pattern matching algorithm in this paper, we propose an algorithm to solve these problems from using thinned and binarized edge data and skipping full point search with edge-map analysis. A point correlation algorithm with the thinned edges is introduced with image pyramid technique to reduce the time complexity. Matching edges instead of using original gray-level pixel data overcomes NGC problems and pyramid of edges also provides fast and stable processing. All proposed methods are preyed from experiments using real images.

Wavelet Transform-based Face Detection for Real-time Applications (실시간 응용을 위한 웨이블릿 변환 기반의 얼굴 검출)

  • 송해진;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.829-842
    • /
    • 2003
  • In this Paper, we propose the new face detection and tracking method based on template matching for real-time applications such as, teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Since the main purpose of paper is to track a face regardless of various environments, we use template-based face tracking method. To generate robust face templates, we apply wavelet transform to the average face image and extract three types of wavelet template from transformed low-resolution average face. However template matching is generally sensitive to the change of illumination conditions, we apply Min-max normalization with histogram equalization according to the variation of intensity. Tracking method is also applied to reduce the computation time and predict precise face candidate region. Finally, facial components are also detected and from the relative distance of two eyes, we estimate the size of facial ellipse.

A 2-Dimensional Barcode Detection Algorithm based on Block Contrast and Projection (블록 명암대비와 프로젝션에 기반한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.259-268
    • /
    • 2008
  • In an effort to increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, we present an effective 2D barcode detection algorithm from gray-level images, especially for the handheld 2D barcode recognition system. To locate the symbol inside the image, a criteria based on the block contrast is adopted, and a gray-scale projection with sub-pixel operation is utilized to segment the symbol precisely from the region of interest(ROI). Finally, the segmented ROI is normalized using the inverse perspective transformation for the following decoding processes. We also introduce the post-processing steps for decoding the QR-code. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments shows that our method is very robust and efficient in detecting the code area for the various types of 2D barcodes in real time.

Noise filtering for Depth Images using Shape Smoothing and Z-buffer Rendering (형상 스무딩과 Z-buffer 렌더링을 이용한 깊이 영상의 노이즈 필터링)

  • Kim, Seung-Man;Park, Jeung-Chul;Cho, Ji-Ho;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1188-1193
    • /
    • 2006
  • 본 논문에서는 동적 객체의 3 차원 정보를 표현하는 깊이 영상의 노이즈 필터링 방법을 제안한다. 실제 객체의 동적인 3 차원 정보는 적외선 깊이 센서가 장착된 깊이 비디오 카메라를 이용하여 실시간으로 획득되며, 일련의 깊이 영상, 즉 깊이 비디오(depth video)로 표현될 수 있다. 하지만 측정환경의 조명조건, 객체의 반사속성, 카메라의 시스템 오차 등으로 인해 깊이 영상에는 고주파 성분의 노이즈가 발생하게 된다. 이를 효과적으로 제거하기 위해 깊이 영상기반의 모델링 기법(depth image-based modeling)을 이용한 3 차원 메쉬 모델링을 수행한다. 생성된 3 차원 메쉬 모델은 깊이 영상의 노이즈로 인해 경계 영역과 형상 내부 영역에 심각한 형상 오차를 가진다. 경계 영역의 오차를 제거하기 위해 깊이 영상으로부터 경계 영역을 추출하고, 가까운 순서로 정렬한 후 angular deviation 을 이용하여 불필요하게 중복된 점들을 제거한다. 그리고 나서 2 차원 가우시안 스무딩 기법을 적용하여 부드러운 경계영역을 생성한다. 형상 내부에 대해서는 경계영역에 제약조건을 주고 3 차원 가우시안 스무딩 기법을 적용하여 전체적으로 부드러운 형상을 생성한다. 최종적으로 스무딩된 3 차원 메쉬모델을 렌더링할 때, 깊이 버퍼에 있는 정규화된 깊이 값들을 추출하여 원래 깊이 영상과 동일한 깊이 영역을 가지도록 저장함으로서 전역적으로 연속적이면서 부드러운 깊이 영상을 생성할 수 있다. 제안된 방법에 의해 노이즈가 제거된 깊이 영상을 이용하여 고품질의 영상기반 렌더링이나 깊이 비디오 기반의 햅틱 렌더링에 적용할 수 있다.

  • PDF

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

A Study on Face Recognition System Using LDA and SVM (LDA와 SVM을 이용한 얼굴 인식 시스템에 관한 연구)

  • Lee, Jung-Jai
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1307-1314
    • /
    • 2015
  • This study proposed a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. The algorithm proposed detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). Also, by applying the feature vector obtained for SVM, face areas can be tested. After the testing, the feature vector is applied to LDA and using Euclidean distance in the 2nd dimension, the final analysis and matching is performed. The algorithm proposed in this study could increase the stability and accuracy of recognition rates and as a large amount of calculation was not necessary due to the use of two dimensions, real-time recognition was possible.

A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code (2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.159-175
    • /
    • 2015
  • The two-dimensional QR code has advantages such as directional nature, enough data storage capacity, ability of error correction, and ability of data restoration. There are two major issues like speed and correctiveness of recognition in the two-dimensional QR code. Therefore, this paper proposes a morphology-based algorithm of detecting the interest region of a barcode. Our research contents can be summarized as follows. First, the interest region of a barcode image was detected by close operations in morphology. Second, after that, the boundary of the barcode are detected by intersecting four cross line outside in a code. Three, the projected image is then rectified into a two-dimensional barcode in a square shape by the reverse-perspective transform. In result, it shows that our detection and recognition rates for the barcode image is also 97.20% and 94.80%, respectively and that outperforms than previous methods in various illumination and distorted image environments.

3-D Facial Animation on the PDA via Automatic Facial Expression Recognition (얼굴 표정의 자동 인식을 통한 PDA 상에서의 3차원 얼굴 애니메이션)

  • Lee Don-Soo;Choi Soo-Mi;Kim Hae-Hwang;Kim Yong-Guk
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.795-802
    • /
    • 2005
  • In this paper, we present a facial expression recognition-synthesis system that recognizes 7 basic emotion information automatically and renders face with non-photorelistic style in PDA For the recognition of the facial expressions, first we need to detect the face area within the image acquired from the camera. Then, a normalization procedure is applied to it for geometrical and illumination corrections. To classify a facial expression, we have found that when Gabor wavelets is combined with enhanced Fisher model the best result comes out. In our case, the out put is the 7 emotional weighting. Such weighting information transmitted to the PDA via a mobile network, is used for non-photorealistic facial expression animation. To render a 3-D avatar which has unique facial character, we adopted the cartoon-like shading method. We found that facial expression animation using emotional curves is more effective in expressing the timing of an expression comparing to the linear interpolation method.

Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation (딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.

Real-Time Camera Tracking for Markerless Augmented Reality (마커 없는 증강현실을 위한 실시간 카메라 추적)

  • Oh, Ju-Hyun;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2011
  • We propose a real-time tracking algorithm for an augmented reality (AR) system for TV broadcasting. The tracking is initialized by detecting the object with the SURF algorithm. A multi-scale approach is used for the stable real-time camera tracking. Normalized cross correlation (NCC) is used to find the patch correspondences, to cope with the unknown and changing lighting condition. Since a zooming camera is used, the focal length should be estimated online. Experimental results show that the focal length of the camera is properly estimated with the proposed online calibration procedure.