• Title/Summary/Keyword: 조면암

Search Result 43, Processing Time 0.019 seconds

A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment (한국 전통 적색광물안료 울릉도석간주의 기능성 연구)

  • Do, Jin-Young;Kim, Soo-Jin;Lee, Sang-Jin;Ahn, Byung-Chan;Yun, Seong-Chul;Kim, Kwang-Jong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The main compositions of "Seokganju", a Korean traditional red mineral pigment, are iron oxides. To investigate its mineralogical and functional properties, we had got its ore from Juto cave in Ulreoung island, which was a famous field of it in Korean documents. The ore occurs as a paleosol between the olivine basalt and amphibole trachyte in discontinuously. It is reddish brown and yellowish brown and consists mainly of clay minerals with minor debris. Its reddish and yellowish brown color are due to the hematite and ferrihydrate, respectively. These iron oxides are precipitated as ferrihydrate from the ferrous water in the paleosol and partly changed to hematite. The color reproduced in timber by using seokganju pigment with traditional tools and methods is similar to that in heritage building. The moistureproofing and fire resistance of Ulreungdo seokganju is far better than that of artificial seokganju. Moreover, the combustion tests show that the artificial seokganju promote the ignition and combustion of the timber. Ulreungdo seokganju is regarded as a pigment with fungicidal efficacy because growth of two wood decay fungi (cov. and typ.) are inhibited in solid medium with it.

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Forming processes and the Value of the Natural Heritage of the Guksubawi in Ulleung Island, Korea (울릉도 국수바위 주상절리의 형성과정과 자연유산적인 가치)

  • Woo, Hyeon Dong;Park, Jin Soo;Oh, Han Sol;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Trachytic cliff showing a unique appearance like noodle is located in the Mt. Bipa, Seo-myeon, Ulleung island. This cliff is named 'Guksubawi'(means noodle-like rock) by its appearance. There is cliffs on three sides except north side and each side shows semi-vertical columnar joints obviously. This columnar joint has different character in appearance and mineralogy according to their direction and this tendency is remarkable in contrast between the east side and the west side. The consideration of the cooling processes after eruption of trachytic lava based on the contrast of both columnar joints dealt in the full text. In the morphological approach, the columnar joint on the east side has narrower space and chisel-like marks than the west side. And the joint walls are sharper on the east side than west side too. In the mineralogical approach, then, trachyte on the west side has bigger phenocrysts than the east side and is showing glomeroporphyritic texture and weak trachytic textures of lath of plagioclase. Around these differences between the east side and the west side, it modelled the typical temperature gradient while the cooling processes of hot rocks and the east side, consequently, corresponds to exterior of the entire trachytic volume. The columnar joint of the Guksubawi has the value of landscape and scientific importance about the forming processes of the columnar joint of trachytic lava, and so supposed it has enough values to preserved as natural heritage.

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea (임진강대 남변부 트라이아스기 보장산조면암의 지구화학과 조구조적 의미)

  • Hwang, Sang Koo;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.

Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island (울릉도 시추 코어의 상온 전기비저항과 물성 간의 상관성)

  • Lee, Tae Jong;Lee, Sang Kyu;Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • Electrical resistivity of 23 core samples from Ulleung Island at dry or saturated condition has been measured along with dry density and effective porosity, and the relations between the properties has also been discussed. Upper and lower bounds of electrical resistivity at room temperature can be provided by the dry- and saturated-resistivity, respectively. Injecting nitrogen gas to the pore space at the very end of drying process can prevent humid air from getting into the pore space, so that measurement of dry-resistivity can be less affected by humidity in the air. Dry density and porosity have very close correlation; the ratio between increase of porosity and the decrease of density showed distinct relation to the rock types, such that basaltic rocks showed higher ratio while trachytic rocks showed lower. Saturated resistivity showed close correlation to density and effective porosity of the rock sample, while dry resistivity didn't.

Phenocryst Composition of Mafic Volcanic Rocks in the Wangtian'e Volcano (망천아 화산 고철질 암석의 반정광물 조성 연구)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2019
  • There are beautiful scenery with columnar jointing at 15 valley of southern slope of the Wangtian'e volcano in Mt. Baekdu volcanic field. The compositions of phenocryst minerals which have porphyritic textures in mafic volcanic rocks of this area were carried out. The Wangtian'e volcano consists of Changbai basalt~trachybasalt (lower part) and Wangtian'e basaltic trachyandesite~trachyte~alkali rhyolite (upper part). This study is focused on the mafic rocks of the Changbai trachybsalt and the Wangtian'e basaltic trachyandesite. Main phenocrysts are feldspar, pyroxene and olivine. The major element compositions of the phenocrysts were analyzed using EPMA. Plagioclase phenocrysts of the Wangtian'e basaltic trachyandesite are located at the border of andesine and oligoclase ($An_{24.1{\sim}36.0}$) in the An-Ab-Or diagram, and those of the Changbai trachybasalt are labradorite ($An_{54.2{\sim}65.2}$). Pyroxene phenocrysts are augite. Olivine phenocrysts of the Changbai trachybsalt are crysolite ($Mg_{0.79-0.77}Fe_{0.21-0.23}$) and microphenocrysts in the groundmass are hyalosiderite ($Mg_{0.58-0.56}Fe_{0.42-0.44}$). Calculated crystallization temperature of olivine phenocrysts is $1196{\sim}1123^{\circ}C$, clinopyroxene is $1122{\sim}1112^{\circ}C$, phenocrysts and laths of plagioclases are $1118{\sim}1107^{\circ}C$ and $1091{\sim}1089^{\circ}C$, respectively. The temperatures suggests that the olivine phenocrysts, clinopyroxene, plagioclase phenocrysts, and plagioclase laths were crystallized in the magma chamber in sequence.

Taxonomical Classification and Genesis of Yongheung Series in Jeju Island (제주도 토양인 용흥통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was conducted to reclassify Yongheung series based on the second edition of Soil Taxonomy and to discuss the formation of Yongheung series in Jeju Island. Morphological properties of typifying pedon of Yongheung series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon contains 3.2~3.4% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than $0.90Mg\;m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 15 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol or Alfisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon and accordingly, can be classified as Humult. It has a clay distribution in which the percentage of clay does not decrese from its maximum amount by 20% or more within a depth of 150 cm from the mineral soil surface, and keys out as Palehumult. Also that meets the requirements of Typic Palehumult. That has 35 % or more clay at the particle-size control section and has mesic soil temperature regime. Yongheung series can be classified as fine, mixed, thermic family of Typic Palehumults, not as fine, mixed, thermic family of Typic Hapludalfs. Most soils distributed in the southern coastal areas in Jeju island which have a humid climate are developed as Andisols. But Yongheung series distributed in this areas and derived from mainly trachyte, trachytic andesite, and volcanic ash are developed as Ultisols.

Studies on Forest Soils in Korea (II) (한국(韓國)의 삼림토양(森林土壤)에 관(關)한 연구(硏究) (II))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.25-35
    • /
    • 1981
  • Some physical and chemical properties of forest soils in Korea were analyzed for providing the reasonable management methods of forest lands, Among 375 soil series surveyed until 1979, 93 soil series of forest soils were classified and analyzed according to their characteristics. Firstly soil data were classified into 5 categories by weathered products and secondly were classified and analyzed by parent rocks. The results are as follows: 1) In forest soils characterized by weathered products volcanic ash soils were proved to be the most fertile and alluvial soils were turned out to be the most infertile soils. Residual soils on mountain and hill were mostly on the average in all kinds of soil properties analyzed except total soil depth. 2) Igneous rocks developed rather infertile soils containing large amount of organic matter and available $P_2O_5$ with relatively deep soil depth and strong acidity. On the other hand sedimentary rocks produced rather shallow soils containing small amount of organic matter and available $P_2O_5$ but they were relatively fertile with weak acidity. 3) Among igneous rocks basalt and trachyte produced very fertile soils and granite and andesite produced slightly infertile soils. 4) Among sedimentary rocks limestone soils had high fertility neutral in acidity but low amount of available $P_2O_5$ 6) Alluvial sand produced generally very infertile soils with great soil depth comparing with the arable alluvial land with high fertility.

  • PDF

Geology and Distribution of Crushed Aggregate Resources in Korea (국내 골재석산의 분포와 유형 분석)

  • Hong Sei Sun;Lee Chang Bum;Park Deok Won;Yang Dong Yun;Kim Ju Yong;Lee Byeong Tae;Oh Keun Chang
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.555-568
    • /
    • 2004
  • The demand of aggregate resources in Korea has been increased with a rapid economic growth since the 1980s. About 25% of the total aggregate production is derived from riverine aggregates, 20% to 25% from marine sands, 40% to 45% from crushed aggregate and the rest 5% to 15% from old fluvial deposits. The abundance of crushed coarse aggregates varies in the uniform distribution of country, but in general it can be concentrated in the most densely populated areas, five main cities. Typical rock types of the Korean crushed stones are classified as plutonic rocks of 27%, metamorphic rocks of 32%, sedimentary rocks and volcanic rocks of 18%, respectively. The most abundant coarse aggregate used in the country is obtained from granite (25% of total) and subordinately gneiss (20%), sandstone (10%) and andesite (10%). Although rock types using as dimension stone are only fifteen, those as aggregate amount up to twenty nine rocks. These rocks consist of plutonic rocks such as granite, syenite, diorite, aplite, porphyry, felsite. dike and volcanic rocks such as rhyolite, andesite, trachyte, basalt, tuff, volcanic breccia and metamorphic rocks such as gneiss, schist, phyllite, slate, meld-sandstone, quartzite, hornfels, calc-silicate rock, amphibolite. And sandstone, shale, mudstone, conglomerate, limestone, breccia, chert are main aggregate sources in tile sedimentary rocks. The abundance of plutonic rocks is the highest in Chungcheongbuk-do, and decreases as the order of Jeollabuk-do, Gangwon-do and Gyeonggi-do. In Jeollanam-do, volcanic aggregates occupy above 50%, on the contrary sedimentary aggregates are above 50% in Gyeongsangnam-do.

The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of $^{40}Ar/^{39}Ar$ Absolute Ages of Lava Samples (제주도의 지질과 화산활동에 관한 연구 (III): $^{40}Ar/^{39}Ar$ 절대연대자료에 근거한 제주도 형성 초기 용암 분출 기록)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • We report twenty data for early lavas erupted during the initial period of formation of Jeju Island on the basis of review on 539 data of whole-rock greochemistry and $^{40}Ar/^{39}Ar$ age dating out of mainly core samples from 69 boreholes drilled in the lower land since 2001 and 66 outcrop sites. Out of 69 boreholes, the early lava flow units are identified from samples collected from Beophocheon (EL 235 m, 210 m deep), Donnaeko (EL 240 m, 230 deep), Donghong-S (EL 187 m, 340 m deep), 05Donghong (EL. 187.6 m, 340 m deep), Dosoon (EL 305 m, 287 m deep), Sangye (EL 230 m, 260 m deep), Mureung-1 (EL 10.2 m, 160 m deep), and Gapa (EL 17.5 m, 92 m deep), which are located in the southern and southwestern portion of Jeju Island. While, the well-known outcrops from Sanbangsan, Wolrabong, Wonmansa, and Kagsubawi are also reconfirmed. $^{40}Ar/^{39}Ar$ age dating results of these lavas range from 1 Ma to 0.7 Ma, indicating that the data can be useful to constrain on age and geochemical characteristics of early lava effusion period in the formation of Jeju Island. Especially, samples with trachybasalt in composition collected from 143 m to 137 m, and from 135 m to 123 m below ground surface at 05Donghong hole have the oldest ages, $992\pm21$ Ka and $988\pm38$ Ka, respectively. This study suggests that in Jeju Island the first lava with trachybasalt in composition may have effused around 1 Ma ago, and the effusion style and chemical compositions of lavas must have changed to the formation of lava domes with trachyte-trachyandesite-basaltic trachyandesite and the eruption of lavas with alkali basalt and trachybasalt intermittently during the period from 0.9 Ma to 0.7 Ma ago. It also indicates that the initial lava flows below the ground are intercalated with or underlain by the Seoguipo Formation except for several exposed domal structure areas such as Sanbangsan and Kagsubawi, implying that the early lava effusion may have intermittently and sporadically occurred with nearby hydrovolcanism and sedimentation.