• Title/Summary/Keyword: 조류농도

Search Result 694, Processing Time 0.03 seconds

Effect of Solvent Extracts from Sargassum hemiphyllum on Inhibition of Growth of Human Cancer Cell Lines and Antioxidant Activity (짝잎모자반(Sargassum hemiphyllum)의 암세포주 증식 억제 및 항산화 효과)

  • Choi, Hyung-Ju;Seo, Young-Wan;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1533-1538
    • /
    • 2007
  • This study was carried out to determine the inhibitory effects of solvent extracts from Sargassum hemiphyllum on growth of cancer cell lines (AGS human gastric adenocarcinoma and HT-29 human colon cancer cells) and production of lipid peroxides. Inhibitory effects of acetone with methylene chloride extract from S. hemiphyllum on the growth of AGS and HT-29 cancer cells were increased as dose dependent patterns (p<0.05). The methanol extract was more effective on inhibition of growth of AGS. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of cancer cells (p<0.05) and the inhibitory effect was stronger in HT-29. In DCFH-DA (dichlorodihydrofluorescin diacetate) assay, acetone with methylene chloride and methanol extracts showed a stronger inhibitory effect on the production of cellular lipid peroxides (p<0.05) compared with the butanol and hexane fractions. These results indicate that the consumption of S. hemiphyllum may be recommended as a potent functional food for preventing cellular oxidation and cancer.

Characteristics of environmental condition and planktonic organisms in ship's ballast water originating from international ports of Japan (우리나라 주요 국제항에 입항하는 일본 기원 선박의 평형수내 환경 및 부유생물 특성)

  • Jang, Pung-Guk;Baek, Seung Ho;Jang, Min-Chl;Hyun, Bong-Gil;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.245-252
    • /
    • 2016
  • This study investigated the environmental conditions and planktonic organisms in the ballast waters (BW) of 22 vessels originating from the international ports of Japan for the purpose of negotiating exemptions from the Ballast Water Management Convention (BWM Convention). The shortest duration of the BW was $3.33{\pm}1.87days$ in area "A", which included Kyushu and Suo Nada at Seto Inland. The total suspended solids, dissolved organic carbon, and particulate organic carbon ranged from 4.60 to 60.9 mg L-1, from 0.97 to 2.69 mg L-1, and from 0.24 to 4.51 mg L-1, respectively. A low average concentration of nutrients was measured in the BW from area "A", but that in the BW from area "C" (around central Honshu) was high, which may be related to the ballasting periods. High chlorophyll-a concentrations (>$1{\mu}g\;L-1$) were measured in four vessels, three of which carried the BW in area "A". High abundances of phytoplankton (> 50,000 cells L-1) were measured in four vessels, three of which carried the BW in area "A". The two vessels originating from Tokyuyama Bay in area "A" showed high densities of dinoflagellates, which are known to be harmful algae. Our results suggest that the negotiations for an exemption from the BWM Convention for Japan should proceed with caution.

The Study of Statistical Optimization of 1,4-dioxane Treatment Using E-beam Process (전자빔 공정을 이용한 1,4-Dioxane 처리의 통계적 최적화 연구)

  • Hwang, Haeyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2011
  • In this study, the experimental design methodology was applied to optimize 1,4-dioxane treatment in E-beam process. Main factor was mathematically described as a function of parameters 1,4-dioxane removal efficiencies(%), TOC removal efficiencies(%) modeled by the use of the central composite design(CCD) method among the response surface methodology(RSM). Concentration of 1,4-dioxane is designated as "$x_1$" and Irradiation intensity is designated as "$x_2$". The regression equation in coded unit between the 1,4-dioxane concentration and removal efficiencies(%) was $y=71.00-10.85x_1+20.67x_2+{1.53x_1}^2-{7.92x_2}^2-1.23x_1x_2$. The regression equation in coded unit between the 1,4-dioxane concentration and TOC removal efficiencies(%) was $y=44.48-13.25x_1+9.54x_2+{5.43x_1}^2-{1.35x_2}^2+4.45x_1x_2$. The model predictions agreed well with the experimentally observed results $R^2$(Adj) over 90%. Toxicity test using algae Pseudokirchneriella Subcapitata showed that the inhibition was reduced according to increasing an E-beam irradiation.

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

The Limnological Survey of Major Lakes in Korea (4): Lake Juam (국내 주요 호수의 육수학적 조사(4) : 주암호)

  • Kim, Bom-Chul;Heo, Woo-Myung;Lim, Byung-Jin;Hwang, Gil-Son;Choi, Kwang-Soon;Choi, Jong-Soo;Park, Ju-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.30-44
    • /
    • 2001
  • In this study limnological characteristics of Lake Juam was surveyed from June 1993 to May 1994 in order to provides important information regarding water resources. Secchi disc transparency, epilimnetic chlorophyll a (chi-a), total nitrogen (TN), total phosphorus (TP) concentration and primary productivity were in the range of $2.0{\sim}4.5\;m$, $0.9{\sim}13.6\;mgChl/m^3$, 0.78$\{sim}$2.32 mgN/l, $11{\sim}56\;mgP/m^3$, $270{\sim}2.160\;mgCm^{-2}\;day^{-1}$, respectively. On the basis of TP, Chl-a and Secchi disc depth, the trophic state of Lake Juam can be classied as mesotrophic lake. The phosphorus inputs from non-point sources are concentrated in heavy rain episodes during the monsoon season. As a result, phosphorus concentration are higher in summer than in winter. TP loading from the watershed were estimated to be $0.9\;gPm^{-2}yr^{-1}$, which correspond to a boundary of the critical loading ($1.0\;gPm^{-2}yr^{-1}$) for eutrophication. From the results of the algal assay, both phosphous and nitrogen act as limiting nutrients in algal growth. The seasonal succession of phytoplankton community structure in Lake Juam was similar to that observed in other temperate lakes. Diatoms (Asterionella formosa and Aulacoseira granulate var. angustissima)fujacofeira BraHuJafa uar. aHgusHrsiaia) weredominant in spring and winter, cyanobacteria) were dominant in warm season. The organic carbon, nitrogen and phosphorus content of lake sediment were $9.5{\sim}14.0\;mgC/g$, $1.01{\sim}1.82\;mgN/g$ and $0.51{\sim}0.65\;mgP/g$, respectively. The allochthonous organic carbon loading from the watershed and autochthonous organic carbon loading by primary production of phytoplankton were determined to be 1,122 tC/yr and 6,718 tC/yr, respectively. To prevent eutrophication of Lake Juam, nutrient management of watershed should be focus on reduction of fertilizer application, proper treatment of manure, and conservation of topsoil as well as point source.

  • PDF

Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Lake Yongdam, Korea (용담호에서 환경요인과 식물플랑크톤의 시공간적 변동)

  • Kwon, Sang-Yong;Kim, Young-Geel;Yih, Won-Ho;Lim, Byung-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.366-377
    • /
    • 2006
  • Environmental gradients and phytoplankton community were studied on a monthly basis, at 3 stations of Lake Yongdam, from April 2002 March 2004. During July to August, thermocline formed at the depth of about 10 m, but it was lowerd depth, in between 25${\sim}$30 m in October. Monthly variations of the epilimnetic (0${\sim}$5 m) TP concentrations at station 1, 2 and 3 were in the range of $5.1{\sim}36.1\;mg\;P\;{\cdot}\;m^{-3}$, $6.1{\sim}77.7\;mg\;P\;{\cdot}\;m^{-3}$ and $6.7{\sim}47.7\;mg\;P\;{\cdot}\;m^{-3}$ respectively; with higher concentrations at the upstream areas showing. Monthly average of the epilimnetic (0${\sim}$5 m) TN concentration at Station 1 was in the range of $0.88{\sim}1.73\;mg\;N\;{\cdot}\;L^{-1}$, and Station 3 was in the range of $0.94{\sim}2.77\;mg\;N\;{\cdot}\;L^{-1}$, which is higher if compared with the values of station 1. Transparency wa:s in the range of 0.8${\sim}$6.7 m, with lower values at upstream areas and higher at the downstream area. As for phytoplankton, during the winter season, diatoms had high appearance rate; during the spring season, Cyclotella comta, Aulacoseira ambigua f. spiralis, A. granulata and similar diatoms, during spring and summer Ankistrodesmus spiralis, Chodatella subsala, Crucigenia irregularis, Coelastrum cambricum, Scenedesmus ecornis v. ecornis.

The Characteristics on the Spatio-temporal Distributions of Phytoplankton Communities in Deukryang Bay, Southwestern Korea (득량만 식물플랑크톤 군집의 시.공간적 분포특성.)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.481-492
    • /
    • 1999
  • The observations on the spatio-temporal distribution and seasonal fluctuations of phytoplankton community were carried out in Deukryang Bay of the Korean Southwestern Sea from June 1992 to April 1993. A total of 75 species of phytoplankton belonged to 47 genera was identified. In Deukryang Bay seasonal succession in dominant species; P. alata, G. flaccida, S. costatum, L. danicus and N. longissima in summer, St. palmeriana, Ch. curvisetus and B. paxillifera in autunm, S. costatum, Ch. curvisetus, E. zodiacus and Pn. pungens in winter, and As. glacialis, As. kariana, N. pelagica, Th. nitzschioides and S. costatum in spring, were very marked, that is to say, the communities structure of phytoplankton in Deukryang Bay appeared to be various species composition and it was occupied with diatoms all the year round. Phytoplankton standing crops fluctuated with an annual mean of $1.4{\times}10^5 cells/1 between the lowest value of 2.6{\times}10^3 cells/1 in July and the highest value of 1.0{\times}10^6 cells/1$ by S. costatum in January. Densities of the phytoplankton cell number by the samples of Deukryang Bay ranged from $2.6{\times}10^3cells/1 to 1.2{\times}10^5 cells/1 with the mean value of 3.6{\times}10^4cells/1 in summer, from 6.0{\times}10^3cells/1 to 2.6{\times}10^5 cells/1 with mean of 1.5{\times}10^5 cells/1 in autumn, from 1.3{\times}10^4cells/1 to 1.0{\times}10^6 cells/1 with mean 3.5{times}10^5 cells/1 in winter, and from 4.8{\times}10^3cells/1 to 6.0{\times}10^5 cells/1 with mean of 1.6{\times}10^5 cells/1$ in autumn. That is to say, phytoplankton standing crops was large in low temperature seasons, on the other hand small in high temperature seasons. Chlorophyll $\alpha$ concentration fluctuated between 0.l9 $\mu$g/l and 12.3 $\mu$g/l in March. in Deukryang Bay seasonal flucturation in chi-$\alpha$ concentration was not marked. Especially, chl-$\alpha$ concentration in the water around Deukryang Island located in the middle part of Deukryang Bay showed patchy distributions with a very high concentration. And chl-$\alpha$ concentration was high during a year. Therefore, phytoplankton production in Deukryang Bay could be very high year-round.

  • PDF

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

Variation of Physical Environment near the Artificial Upwelling Structure during the Summer (하계 인공용승구조물 주변해역의 물리환경변화)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 2015
  • In order to study the characteristics of physical environment in water column around the artificial upwelling structure, CTD and currents measurements were carried out along line observations. Before installation of artificial upwelling structure was installed, the stratification of water column existed 30m in water depth. After installation of artificial upwelling structure, however, stratification formation depth and strength changed depending on currents directions. It seems that the change of stratification has a close relation with upwelling of lower temperature water. After installing the artificial upwelling structure, the distributions of vertical flows were analyzed. Local upwelling and downwelling flows showed a distinct time and spacial changes. Local upwelling flows caused by artificial upwelling structure appeared 100 times larger than coastal upwelling in the South-East Sea of Korea. Upwelling flows generated by the artificial structure raised the high concentration of nutrients to upper layer from lower layer breaking stratification in the summer. Thus, upwelling structure plays an important role for vertical water circulation improving the food environments by increasing primary production.