• Title/Summary/Keyword: 조기 압축강도

Search Result 98, Processing Time 0.036 seconds

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

A Study for the Quality Improvement of Concrete Using Fly-Ash High Volume (플라이애시를 다량 치환한 콘크리트의 품질향상에 관한 연구)

  • Lee, Joung-Ah;Park, Jong-Ho;Chung, Yoong;Park, Bong-Soon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.601-604
    • /
    • 2008
  • This study as using admixture (G), high early strength agent, calcium hydroxide {a(OH)2} and fine particle cement, etc which have been newly developed for the purpose of quality improvements like the improvement of early strength of concrete that the FA was substituted by 20%, etc, reviewed the possibility of the utilization in the great quantity and the results are summarized as the followings. Slump loss by the kind of mixing material of high early strength agent and Ca(OH)$_2$ showed the smaller width of decrease than that of plain to appear the improved results and fine particle cement and G admixture showed the large slump loss. Air contents were appeared to satisfy the target air contents at all mixing materials. Regarding the compressive strength of the concrete by the kind of mixing material, G admixture was appeared to be highest all on aging 3 days, 7days and 28days at the initial strength. And fine particle cement and high early strength agent showed higher strength increase rate on aging 3days than plain but showed that the increase of strength becomes gradually dulled as aging is increased. And Ca(OH)$_2$ had almost no effect.

  • PDF

Studies on Properties of Superplasticized Fly Ash Concrete (고류동화제(高流動化劑)를 사용한 플라이애쉬 콘크리트의 제성질(諸性質)에 관한 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Cho, Il Ho
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.212-224
    • /
    • 1989
  • This paper reports results of an investigation to determine properties of superplasticizered fly ash concrete. The mixture proportions of fly ash were 0, 10, 20 and 30%, by weight of cement, and superplasticizer was added as a percentage of fly ash, 0, 0.6, 12 and 1.8%. To investigate the effective use of the superplasticized fly ash concrete, the basic data were analyzed. The results obtained were summarized as follows : 1. The unit water content was decreased by 1%, 6% and increased by 2% to the ratio of addition of fly ash 10%, 20%, 30%, respectively, but in case of the superplasticized fly ash concrete, it was decreased by 3~16%, 4~14% and 10~17%, at 0.6, 12, and 1.8% dosage of superplasticizer, respectively. 2. In the properties of the fresh fly ash concrete, the slump loss was reduced with the ratio of replacement of fly ash increased, and with times went by. When using superplasticizer in fly ash substituting concrete, the fludity in the concrete was not decreased. 3. The compressive strength of fly ash concrete at early ages was lower than that of ordinary concrete. At the later age of 28 days, the compressive strength with 20% addition of fly ash was increased than that of ordinary concrete. In cased of 10%, 30% addition of fly ash, the compressive strength were reduced. From this, it was proved that the optimum amount of fly ash appears to be about 20%. The compressive strength at all ages of superplasticized fly ash concrete was significantly higher than that of fly ash concrete, with increasing fly ash content. 4. In case of the tensile strength, the effects of the increasing strength with the ages were similar to those of the compressive strtength, and at the later ages was seen a decreasing tendency of strengths. 5. The correlation between compressive and tensile strength of superplasticized fly ash concrete was highly significant. The multiple regression equations of compressive and tensile strength were obtained on a function of the mixture proportion of fly ash and the addition of superplasticizer. The relation between compressive and tensile strength is higher than for ordinary concrete. The strength ratio is 7~11, and it is higher than that of ordinary concrete, 8~10. 6. Bulk density was decreased by 1~3% compared with ordinary concrete with the mixture proportion of fly ash increased, 10~30%, and decreased by 1~2% with the superplasticizer added 0.6~1.8%.

  • PDF

A Study on Preventive Methods Against Concrete Corrosion by Sea Water of the of West Sea (서해조수에 의한 콘크리트의 부식 방지법에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2622-2633
    • /
    • 1972
  • This study was attempted in order to search for phyosical properties on various mix designs of concrete as ne of studies relating top revention against corrosion by action of sea water in the West Sea. In this study, as concerete mix design, fly ash, pozzolith and vinsolresin were used as admixtures for normal portland cement respectively, and pozzolan cement and normal cement were also used for each plain concrete. Concrete specimens were made and cured in accordance with the Korean Standard Specifications for concrete. In thetest, compressive strengths of the specimens were measured at the following ages; 7-day, 28-days and 3-months. Absorption test was made by immersing the specimens in water kept at boiling temperature for 5 hours. The results obtained from the tests are summarized as follows; 1. The use of fly ash as an admixture in mix design of concrete, has an effect on compressive strength at each age. But it is actually not effective on absorption by concrete, as the result of the fly ash concrete is almost the same at that of ordinary plain concrete. 2. The use of pozzolith as an admixture in mix design of concrete, has an effect on both of compressive strength at each age and absorption rate. The pozzolith is more effective than vinsol resin, relating to improvement for physical proreties of concrete. 3. The use of vinsol resin as an admixture in mix design of concrete, has also an effect on both of compressive strength at each age and absorption rate. As the above fact, effectiveness of the vinsol resin is some what lower than pozzolith, as far as physical properties of the concrete are concerned. 4. Plain concrete used pozzolan cement only is the most effective on both of strength at each age and absorption rate in this study. The pozzolan cement is characteristic of higher strenth as the age is later. 5. Relationship between compreessive strengths and absorption rates of the concrete is shown by a different regression line dependingon ages. The gradient of the regression line is steeper as the age is later. 6. Throught physical test, it may be expected that the use of pozzolith and vinsol resinas asan admixture respectively will be better resistant than fly ash or ordinary plain concrete and that plain pozzolan concrete will also be the best resistant to action of sea water due to improvement of theirphysical properties.

  • PDF

Study on Stress Variation in Slab and Support of Shearwall-Type RC Apartment during Construction (전단벽식 아파트에서 시공중 슬래브 및 동바리의 응력변화에 대한 연구)

  • Kim Young-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.161-165
    • /
    • 2004
  • Safety and efficiency in the construction of RC structures mainly depends on optimal operation of shore-slat systems. The disasters in RC construction are mainly due to excessive load applied to falsework and premature removal of supports. Development of sufficient compressive strength of early-age connote is essential for the safety of structures during construction. Most of studies on shore-slab interaction have focused on flat slab structures. In this study, load distributions in floor slabs and supports during the construction of shear wall-type RC apartment building structures is investigated using finite element analysis.

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

Application of High Durable Concrete in Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장에서 고내구성 콘크리트의 적용)

  • Choi, Pan-Gil;Lee, Bong-Hak;Jeong, Beom-Seok;Kim, Dong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.435-436
    • /
    • 2009
  • The objective of this study was to develop the high-durable concrete which is mixed silica fume and fly ash in post-tensioned concrete pavement. Test results show that early-age compressive strength was increased with addition of silica fume. Water-permeability was improved significantly comparing with standard concrete.

  • PDF

Characteristics of Mortar and Concrete Using Pit Sand and Sea Sand (산사 및 해사를 사용한 모르터, 콘크리트의 특성)

  • 윤상대;배수호
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1993
  • 최근 건설공사의 급증으로 인한 하천골재의 고갈로 콘크리트용 대체골재로서 해사\ulcorner선사 등이 대구되고 있다. 그러나 해사는 세척하지 않고 그대로 콘크리트에 사용할 경우 콘크리트중의 철근부식 촉진에 따른 콘크리트의 균열발생 등 조기 노후화현상으로 내구성에 많은 문제점을 내포하고 있고, 산사는 국내 연구실적이 전혀 없는 상태에서 지역적으로 무분별하게 사용되고 있어 이들에 관한 제반 공학적 특성 및 활영방안 연구가 시급한 실정이다. 따라서 본 연구는 산사\ulcorner해사를 사용한 콘크리트의 압축강도 특성 및 해사의 염분함량과 콘크리트의 물-시멘트비에 따른 철근부식량과의 관계를 구명하였다.

A Fundamental Study on Early Compressive Strength Improvement of the Blast Furnace Slag Cement Mortar Using the Fine Particle Cement and Gypsum (석고 및 미분시멘트에 의한 고로슬래그 미분말 치환 시멘트 모르타르의 초기강도 향상에 관한 기초적 연구)

  • Han, Cheon-Goo;No, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • The purpose of the study was to examine basic property at the time of applying cast ('CS' below) and high fineness fine particle cement ('FC' below) as a stimulant to 20% substitution cement mortar of ground granulated blast-furnace slag ('BS' below) to settle a problem that early strength of BS mortar is lowered. The results were as follows. First of all, as a characteristic of fresh mortar, liquidity was reduced as much as BS substitution rate was increased. When substituting CS for BS 20%, it didn't have a large effect regardless of substitution rate. When substituting FC, it was reduced as much as substitution was increased. In the event of compressive strength, it was reduced as much as BS substitution was increased in early age. In age 28, it was somewhat increased by reflection of potential hydraulicity. With regard to improvement of early compressive/bending strength of BS 20% substitution mortar, when substituting CS, in early age, they were a little increased as much as addition rate was increased. When substituting FC, in early and 28 age, they were largely increased as much as substitution rate was increased. To settle a problem that early strength of BS 20% substitution mortar was lowered, CS substitution has a little effect and FC 25% substitution was similar to plain with only OPC. Therefore, when substituting FC 25%, it is expected that its quality will be improved.

  • PDF

Mechanical Properties of Cement Grout Including Conductive Materials (전도성 재료를 포함한 시멘트 그라우트의 역학적 특성)

  • Choi, Hyojun;Cho, Wanjei;Hwang, Bumsik;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2020
  • Recently, underground spaces have been developed variously due to the concentration of the building structure in downtown area and reconstruction of the apartment. However, various problems such as differential settlement are occurring in the waterproof and reinforcement construction. In grouting method, which is frequently used for the ground reinforcement, quality control was performed by measuring the injection quantity of grouting materials and performing laboratory tests using boring samples, but it is difficult to determine whether the ground reinforcement has been performed properly during the construction stage. In order to solve this problem, a research is needed to carry out quality control by measuring electric resistivity after grouting is performed using grouting materials mixed with conductive materials. In this research, as a basic study of the new grouting method using conductive materials, uniaxial compression tests were performed using cement specimen with 0, 3, 5, 7% of carbon fiber to evaluate the effect of conductive material on the performance of grouting material. Based on the test results, the uniaxial compressive strength is increased with the mixed proportion of the carbon fiber increase. Furthermore, the carbon fiber can also affect on the early-strength of the grouting materials.