• Title/Summary/Keyword: 제한영양염류

Search Result 55, Processing Time 0.024 seconds

Prediction of cyanobacteria population based on Poisson regression based on hydro-meteorological condition (수문기상 조건을 고려한 Poisson regression 기반의 Cyanobacteria 개체수 예측)

  • Cho, Hemie;Huong, Nguyen Thi;Moon, Jangwon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.208-208
    • /
    • 2020
  • 지구온난화와 하천환경의 변화로 수질 오염이 심각해지고 녹조 현상 등의 피해가 증가하고 있다. 특히, 기후변화로 인해 온도와 강우량의 변동성이 동시에 증가하고 있어 하천의 수환경 관리측면에서 어려움이 증가하고 있다. 최근 하천 개발 사업으로 인한 인공 구조물 축조로 하천의 오염도 변화는 중요한 논점으로 대두되었으며, 그에 따라 정확한 수질 전망이 요구되고 있다. 녹조평가에 있어 주요 대리변수(proxy variable)로 chlorophyll-a(Chl-a)가 사용되고 있지만, Chl-a는 규조류와 남조류(cyanobacteria) 모두에서 발견되는 지표로서, 녹조의 유해성을 Chl-a 수질 지표만을 사용하여 판단하기에는 한계가 있다. Chl-a뿐만 아니라 수질에 대한 유량, 온도, 영양염류 등의 영향 또한 기존 연구에서 밝혀진 바 있다. 하지만 기존의 물리기반의 결정론적모형은 수질의 추계학적(stochastic) 특성을 반영하는데 제한적이며, 다양한 수문기상학적 조건을 고려한 시나리오 기반의 분석을 수행하는데 한계가 있다. 따라서 본 연구에서는 특정 지점의 보 건설 이후 수문기상 자료를 이용하여 유해 남조류 개체수와 관계있는 수문기상학적 요인을 평가하고 최종적으로 Bayesian Poisson Regression 기반의 중·장기 녹조 예측 모형을 개발하였으며, 해설결과에 대한 불확실성 정보도 제공할 수 있도록 하였다.

  • PDF

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea (광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;choi, Hyun-Woo;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2014
  • In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

Annual Fluctuation (2000 ${\sim}$ 2003) of Water Quality and Cyanobacterial Abundance in the Lower Part of Han-River (한강 하류의 남조류 및 환경요인의 연간 (2000 ${\sim}$ 2003) 변화에 대하여)

  • Suh, Mi-Yeon;Kim, Baik-Ho;Bae, Kyung-Seok;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.181-187
    • /
    • 2005
  • For 4 years (2000 ${\sim}$ 2003), annual fluctuations of standing crops of cyanobacteria and physicochemical factors were examined at five sites from Bridge of Seungsoo to Bridge of Seungsan in the lower part of Han River. The cyanobacterial abundance (ND to 4,167 cells $mL^{-1}$) was strongly decreased during the heavy rains in every year. During the similar periods in 2003, cyanobacteria hardly observed, and comprised below of 10 percentage of total phytoplankton. In the period of little cyanobacteria, some green algae and diatom dominated the phytoplankton community, while the concentration of chlorophyll a has not largely change. These results indicate that heavy frequent precipitation strongly limited the growth of cyanobacteria, and lead an algal succession by the appearance of new algal groups.

The Characteristics of Spatio-Temporal Distribution on Phytoplankton in the Nakdong River Estuary, during 2013-2015 (낙동강 하구역에서 2013-2015년 식물플랑크톤의 시·공간분포 특성)

  • Yoo, Man-Ho;Youn, Seok-Hyun;Park, Kyung-Woo;Kim, A-Ram;Yoon, Sang-Chol;Suh, Young-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.738-749
    • /
    • 2016
  • To understand the characteristics of the spatio-temporal distribution of phytoplankton after barrage construction in the Nakdong River Estuary, this study investigated relevant environmental parameters and phytoplankton status based on bi-monthly samples collected from the Nakdong River Estuary itself from February 2013 to December 2015. Environmental parameters did not differ significantly across these years but did vary between zones and seasons. The results suggested that the upper zone was dominated by fresh-water diatoms, green algae, and blue-green algae, whereas the lower zone was mostly dominated by dinoflagellates. The presence of Stephanodiscus spp., Asterionellopsis formosa, and Microcystis spp. in the upper zone was related to the inflow of freshwater discharge by artificial control of dyke gates. The dominant phytoplankton species in this zone were dependent on temperature, wind speed, DIP, and DIN, while those in the lower zone were mostly dependent on nutrients and wind speed. In addition, at the lower zone, there were negative correlations between Prorocentrum donghaiense, DIN, and wind speed, with its abundance being higher during the summer than other seasons. Analysis of temporal variations did not indicate any significant differences in the upper zone but did reveal variations among seasons at the lower zone. Except in 2014, the lower zone could be divided into periods dominated by diatoms (October-April) and dinoflagellates (June-August). These results suggest that the characteristics of the phytoplankton community were influenced by changes in the inflow of freshwater species and nutrients given the difference in the range affected by freshwater discharge.

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

The Physico-chemical Characteristics in the Garorim Bay, Korea (가로림만의 이화학적 수질의 시.공간적 특성)

  • Nam, Hyun-Jun;Heo, Seung;Park, Seung-Yun;Hwang, Un-Ki;Park, Jong-Soo;Lee, Hae-Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.101-114
    • /
    • 2012
  • The physico-chemical characteristics including water temperature, salinity, dissolved oxygen(DO), chemical oxygen demand (COD), chlorophyll-a(Chl. a), suspended particulate matter(SPM) and dissolved inorganic nutrients were investigated in the Garolim Bay, Yellow Sea, Korea in 2010 carried out six times per year at 11 fixed stations by Korea Fisheries Research & Development Institute. The water temperature, salinity, COD, dissolved inorganic nutrients, Chl. a and SPM showed significant difference between surface and bottom water but the other parameters didn't. There were not significant difference between stations. The water temperature showed typical change patterns of the temperate seawater. The annual average of salinity showed more than 31 so that there could not have occurred low saline water. The average of DO from June to August showed over than 3mg/L which showed higher than the below standard value of the hypoxic (oxygen-deficient) water. The average of Chl. a varied $1.68{\mu}g/L$ at surface, $2.38{\mu}g/L$ at bottom layer in June and $1.68{\mu}g/L$ at surface, $1.57{\mu}g/L$ at bottom layer at August. The dissolved inorganic nutrients showed high concentration in February and low concentration in August due to the limitation of the freshwater input in summer and phytoplankton used to the dissolved inorganic nutrients. The ratio of DIN/DIP showed 30.52 at surface and 37.89 at bottom layer in June which was higher than other month. The SPM was 44.15mg/L at bottom layer in February which was the highest value in this study due to the northwest monsoon. Because of the actively water change in the open sea without inflow of freshwater from land in Garolom Bay, there were not occurred low saline water and hypoxic water. thus, this Bay showed good water quality and required to be conserved continuously as important costal area for fisheries.

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Nutrients and Chlorophyll Dynamics Along the Longitudinal Gradients of Daechung Reservoir (대청호에서 종적구배에 따른 영양염류 및 엽록소의 역동성)

  • Bae, Dae-Yeul;Yang, Eun-Chan;Jung, Seung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.285-293
    • /
    • 2007
  • The study was to determine zonal characteristics of nutrients and chlorophyll and evaluate their trophic relations in Daechung Reservoir. For this study, we compared longterm water quality data among three zones along with trophic state using 1993 to 2002 dataset, obtained from the Ministry of Environment, Korea. Total phosphorous (TP), Secchi depth (SD) and chlorophyll (CHL) showed typical longitudinal declines from the riverine to lacustrine zone, but total nitrogen (TN) was not evident. Largest seasonal variations in TP and CHL occurred during the summer monsoon from July to August. In the reservoir, ambient TN averaged 1.67 mg $L^{-1}$ and ratios of TN : TP averaged 88.04, indicating that nitrogen is not likely limited but phosphorus limitation was evident. Trophic State Index (TSI), based on CHL, TP, and SD, varied depending on the zones and seasons. Mean TSI (TP) in the riverine zone was 62 during the monsoon, indicating a hypertrophic condition, whereas the mean was 40 in the lacustrine, indicating a nearly oligotrophic. Values of TSI (CHL) showed maximum in the transition zone during the monsoon. The deviation analysis of TSI showed that about 65% of TSI (CHL)-TSI (TP) and TSI (CHL)-TSI (SD) values were less than zero and the lowest values were -42, indicating an effect of inorganic turbidity on algal growth in the reservoir. Correlation analysis of CHL vs. SD shewed greater correlation coefficient (p<0.001, r=-0.47) in the transition than other two zones (p<0.001, $r{\leq}-0.40$). Correlation analysis of TP vs. CHL was greatest in the lacustrine and TP was minimum in the lacustrine zone, indicating a lowest yield of algal biomass in the lacustrine. Overall data suggests that zonal response of chlorophyll yield at a given nutrient unit is clearly differed among the longitudinal gradients, so the management strategy such as cross sectional modelling should be provided in each zone.

Water Quality and Heavy Metals in the Surface Seawaters of the Saemangeum Area during the Saemangeum-dike Construction (새만금 방조제 체절 과정 중 새만금 주변해역 표층수의 수질과 중금속 분포 특성)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Kim, Seong-Soo;Park, Jong-Soo;Park, Jun-Kun;Cho, Sung-Rok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2009
  • In order to investigate spatial and temporal distributional characteristics of major water qualities in the Saemangeum area during the Saemangeum dike construction, salinity, COD, dissolved nutrients(DIN, Silicate) and heavy metals were analyzed from the surface water collected in April, May, August and November 2002. The overall value of Salinity, COD, DIN, and silicate in surface waters were in the range of $13.08{\sim}31.96\;psu$, $0.12{\sim}3.43\;mg/L$, $0.001{\sim}2.638\;mg/L$, and $0.010{\sim}3.181\;mg/L$, respectively. The COD and DIN in each survey showed the highest concentration at the mouth of Mangyeong river estuary(St. 1) where freshwater flow into the Saemangeum area. The concentrations of nutrients were high in the inner part of the Saemangeum dike with low-salinity, and low nutrients in the outer part of the dike with high-salinity, which strongly indicated that concentrations were adjusted by physical mixing. The ranges of dissolved metals and acid-soluble Hg in surface seawater were $0.006{\sim}0.115{\mu}g/L$ for Co, $0.26{\sim}0.114{\mu}g/L$ for Ni, $0.14{\sim}0.93{\mu}g/L$ for Cu, $0.04{\sim}0.53{\mu}g/L$ for Zn, $0.010{\sim}0.043{\mu}g/L$ for Cd, $0.010{\sim}0.795{\mu}g/L$ for Pb, and $0.25{\sim}4.16{\mu}g/L$ for Hg. The highest concentrations of some metals except for Cd were found at the estuary(Sts. 1 or 3). In most cases, a decreasing order of metal concentrations towards open sea(low-salinity$\rightarrow$high-salinity) was observed and showed positive relationship with DIN and silicate caused by land base pollutants input. On the other hand, due to Cd desorption from suspended solids in saline water, dissolved Cd concentrations were high in high-salinity area and low in low-salinity. In November, Co, Zn, Cu and Pb were relatively high in the northern area of the outer-side of Saemangeum, which was only influenced by the Geum river discharge. The concentrations of most dissolved metals of this study were lower than those of the past data in this area, but higher than those in Lena river estuary under the pristine environment.

  • PDF

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF