• Title/Summary/Keyword: 제올라이트 흡착제

Search Result 99, Processing Time 0.023 seconds

Adsorption Characitritics of Sorbent for Oxygen Generator (산소발생기용 흡착제의 흡착특성)

  • Choi Sang-Il;Jang Hyun Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.315-317
    • /
    • 2005
  • 공기중의 산소농축 PSA 기술로 RPSA(Rapid Pressure swing adsorption)이 적용되므로 1979년 이후 소형의 의료용 장치로 상업화되기 시작하였다. 산소발생기(산소농축기)의 경우에도 개량형 RPSA방식을 적용한 기술로써 최근 우리나라도 고령화 사회가 되므로써 의료용으로 사용이 확대되고 있으며, 기타 작업장이나 특수 시설 등에서 사용이 증대되고 있다. 이러한 산소농축기의 핵심부품 중의 하나인 흡착탑의 경우 흡착제 구성 및 흡착탑의 구조에 의하여 성능이 좌우되고 있다. 현재 상용화된 제올라이트의 각 흡착제의 흡착특성을 도출하기 위하여 압력, 온도, 수분함유량에 따른 파과곡선을 측정하여 흡착탑의 단수에 따른 최적 단수를 도출하였다.

  • PDF

The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System (반도체 클린룸용 세라믹 Rotor 흡착제 개발)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • The present invention relates to a absorption rotor for removed VOC(volatile organic compound) and humidity in semiconductor clean room system. A absorption rotor medium is made by NaX zeolite and TS-1 zeolite formed on a honeycomb matrix of ceramic papers. The crystallization of NaX zeolite was hydrothermal reaction, and NaX zeolite crystals of a uniform particle size of 5$\mu$m were synthesized that NaX zeolite seed crystals (2~3$\mu$m) added in a batch composition at levels of 3~15 wt$\%$. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to a uniform NaX zeolite crystal. The microporous zeolite-type titanosilicate(TS-1) was synthesized by different of the reactant solution pH. The pH range of reactant solution has been changed from 10.0 to 11.5 TS-1 zeolite (ETS-10), having a large pore(8~10 $\AA$), was synthesized at 10.4 of pH, since TS-1 zeolite (ETS-4), having a small pore(3~5$\AA$), was synthesized at 11.5 of pH.

  • PDF

Removal of Odorants by Selective Adsorption from Natural Gas for Protection of Steam Reforming Catalyst in Fuel Cell from Sulfur Poisoning (연료전지용 개질기 촉매의 피독방지를 위한 천연가스 중의 황성분 부취제의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.337-343
    • /
    • 2007
  • The reforming catalyst and the electrodes in fuel cells can be poisoned by the organic sulfur compound which is added as an odorant for checking out the leakage of natural gas, and that makes a big problem of system degradation. In this study, various adsorbents, such as silica, ${\gamma}$-alumina, activated carbon, HZSM-5, Ultra-stable Y zeolite (USY), and beta zeolite (BEA), were utilized to remove tetra-hydrothiophene (THT) and tert-butylmercaptan (TBM), and to confirm the performance in the adsorption of those odorants by using a continuous adsorptive bed. The effects of Si/Al ratio of zeolites, adsorption temperature and the type of balance gas (methane or He) on the adsorption performance in the packed bed have been investigated. In addition, the competitive adsorption between TBM and THT on the adsorbents was also estimated. The result shows that H-type BEA zeolite exhibited the highest adsorption capacity for TBM and THT odorant, and the higher amount of THT was removed adsorptively on the same adsorbent than TBM. The physical and chemical adsorption of those compounds on acid sites of zeolite were confirmed by temperature programmed desorption (TPD) and infrared spectrum (IR) analyses.

Adsorption of water vapor on zeolites of different framework types and alkali ions (다양한 구조와 양이온을 갖는 제올라이트 분체의 수증기 흡착 거동 연구)

  • Song, Ju-Sub;Sharma, Pankaj;Kim, Beom-Ju;Kim, Min-Zi;Han, Moon-Hee;Cho, Churl-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.160-168
    • /
    • 2014
  • In the present study, water vapor adsorption was evaluated at 298.15K for 9 different zeolites having LTA, FAU, CHA, and RHO frameworks, and then effect of framework type, Si/Al molar ratio, and alkali ion type on water up-take was investigated. Zeolites showed water up-takes which were increased in an order of $RHO<CHA{\approx}LTA<FAU$ frameworks. NaY zeolite having FAU framework showed a water up-take of 406 mg/g at p/po=0.5. The up-take was a little larger than that of 13X zeolite with the same framework. Among LTA zeolites, Ca-type 5A zeolite showed the highest water adsorption (282 mg/g at p/po=0.5) which could be explained by the large pore volume. Both CHA zeolite with a Si/Al molar ratio of 2.35 and RHO zeolite with a Si/Al molar ratio of 3.56 showed considerable water up-takes, even though the Si/Al molar ratio was much larger than that of LTA zeolite. In the present study, it is announced that in addition to FAU and LTA zeolites, CHA and RHO zeolites can be a promising dehumidification adsorbent.

Investigation of Selective $CO_2$ Adsorption performance in Landfill Gas with pre-treated Zeolite 13X (매립지 가스 중 $CO_2$$CH_4$ 분리를 위한 흡착제 제조 공정 연구)

  • Yoon, Sang-Phil;Jung, Dong-Ha;Jeon, Young-Shin;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.172.1-172.1
    • /
    • 2011
  • 본 연구에서는 매립지에서 발생하는 주요한 가스인 $CO_2$(47~55%)와 $CH_4$(47~55%)가스를 분리하기 위하여 여러 $CO_2$ capture 방법 중 Zeolite를 사용한 흡착법을 이용하였다. 국내에서 시판되고 있는 powder형 Zeolite 13X에 Inorganic binder와 organic binder를 최적의 비율로 혼합한 후 증류수를 이용하여 Pellet type 흡착제를 제조하였다. 또한 최종적으로 $CO_2$의 흡착능을 높이기 위하여 양이온(1M의 KCl, NaCl, $CaCl_2$, $LiCl_2$)으로 이온교환을 하였다. 매립지 모사가스($CO_2$:40%, $CH_4$:60%)를 이용하여 실시간 분석기(Delta1600S)를 이용 두 가스의 분리와 $CO_2$ 흡착성능(mg-CO2/g-흡착제)을 확인하였다. 개발된 흡착제(AjouEpl 13X)는 ICP, XRD, XRF, BET 분석으로 제올라이트의 구조와 성분을 분석하였다.

  • PDF

Removal of Ammonium and Nitrate Nitrogens from Wastewater using Zeolite (제올라이트를 이용한 수중의 암모니아성 및 질산성 질소 제거에 관한 연구)

  • Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The objective of this study lies in identifying the applicability of zeolite for the removal of wastewater ammonium and nitrate nitrogens. To this end, the author tracked adsorption variations as seen with the adsorption removal of wastewater ammonium and nitrate nitrogens. As a result, it was indicated that the maximum adsorption of zeolite acting on the adsorption removal of ammonium nitrogen would reach 120mg/g (weight of ammonium nitrogen divided by that of zeolite), and that Langmuir adsorption isotherm explained the adsorption of ammonium and nitrate nitrogens better than Freundlich adsorption isotherm. This means that zeolite makes ion exchanges with adsorbate for unilayer adsorption. It was also indicated that the removal efficiency of ammonium nitrogen with varying pH would be higher in the order of pH7 > pH5 > pH9 > pH3.

Binding of Zeolites to Inorganic Fiber using Covalent Linkers (공유결합을 이용한 무기질 섬유와 제올라이트의 결합)

  • Song, Kyeong-Keun;Yoo, Yoon-Jong;Kim, Hong-Soo;Ha, Kwang
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.254-258
    • /
    • 2006
  • Zeolites with excellent adsorption capacity of volatile organic compounds were attached onto inorganic fibers which were the raw materials of honeycomb-type adsorbers. The amounts of zeolite particles attached onto the fibers considerably increased by treating them with hydrochloric acid, sulfuric acid, or hydrofluoric acid. Various functional groups such as chloropropyl, aminopropyl and epoxy groups of silane compounds, and amine groups of polyethylenimine were employed as covalent linkage materials between the fibers and zeolite particles. The state of the fibers coated with zeolite particles was examined by scanning electron microscopy, and the amounts of zeolite particles bound to the fibers were estimated from their BET surface areas. The largest amount was obtained when polyethylenimine was employed as a linkage material. Polyethylenimine was the most effective for attaching zeolite particles onto the inorganic fibers among various linkers employed.

Adsorption Characteristics of Methane and Carbon Dioxide in Zeolite with Flexible Framework (유연한 구조체를 가지는 제올라이트에서 메탄과 이산화탄소의 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.248-257
    • /
    • 2024
  • Carbon dioxide is an undesired component of biogas and landfill gas. As a result, it needs to be removed from these mixtures in order to increase their heating value and reduce corrosion during treatment. Zeolites are a class of microporous materials that can be used as adsorbents for the separation of carbon dioxide from gas mixtures. In this work, the pure gas adsorption isotherms of methane and carbon dioxide and the selectivity of their mixture onto LTA-4A, FAU-13X and FAU-NaY adsorbents at temperatures of 273, 298 and 323 K and pressures up to 30 bars were calculated by the Monte Carlo method. Also, the influence of a flexible framework in a set of zeolites on the separation of methane and carbon dioxide was studied. Carbon dioxide adsorption onto the zeolites used in this work was more favorable than methane adsorption. The FAU-13X adsorbent had the highest adsorption capacity among the studied adsorbents. However, the selectivity of carbon dioxide over methane for LTA-4A was the highest. The adsorption capacities of a rigid framework were higher than those of a flexible framework. The influence of the framework flexibility in FAU on adsorption capacity was small. In contrast, its influence on selectivity seemed to be much larger.