• Title/Summary/Keyword: 제어 강건성

Search Result 93, Processing Time 0.025 seconds

The study on Flyback converter Using digital controller (디지털 제어기를 이용한 Flyback converter 관한 연구)

  • Kang, Geon-Il;Lee, Jeong-Woon;Yang, Seung-Hak;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.43-45
    • /
    • 2008
  • 컨버터의 제어는 보통 아날로그 제어기를 기반으로 한다. 전용 아날로그 상용 IC들로 복잡한 회로의 장점을 극복하고 있고 이로 인해 기본성능을 수행하고 저가격화와 사용상의 편의를 얻을 수 있다. 그러나 이러한 장점은 디지털 제어기의 성능 개선과 가격의 하락으로 전용의 IC에 필적하는 파워 컨버터의 응용을 가능하게 만들었다. DC-DC 컨버터 내부 파라미터에 대한 모니터링이 가능하며, 아날로그 제어방식에서는 처음의 사양에 의해 고정된 출력전압을 얻었지만 디지털 제어 방식에서는 PC와 DC-DC 컨버터간 통신을 통하여 사용자가 원하는 임의의 전압을 얻어낼 수 있고 원격제어가 가능하다. 본 논문에서는 이와 같은 디지털 제어기의 장점과 실용성을 제시하고자 소신호 모델식을 기반으로 하여 디지털 모드 제어기를 설계하고, 이를 구현하기 위해 원칩 마이크로컨트롤러인 microchip사의 dsPIC30F2020을 사용하였다. 마이크로컨트롤러를 이용한 DC-DC 컨버터의 실용성을 검토하였다.

  • PDF

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.

Area Search of Multiple UAV's based on Evolutionary Robotics (진화로봇공학 기반의 복수 무인기를 이용한 영역 탐색)

  • Oh, Soo-Hun;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.352-362
    • /
    • 2010
  • The simultaneous operation of multiple UAV's makes it possible to enhance the mission accomplishment efficiency. In order to achieve this, easily scalable control algorithms are required, and swarm intelligence having such characteristics as flexibility, robustness, decentralized control, and self-organization based on behavioral model comes into the spotlight as a practical substitute. Recently, evolutionary robotics is applied to the control of UAV's to overcome the weakness of difficulties in the logical design of behavioral rules. In this paper, a neural network controller evolved by evolutionary robotics is applied to the control of multiple UAV's which have the mission of searching limited area. Several numerical demonstrations show the proposed algorithm has superior results to those of behavior based neural network controller which is designed by intuition.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Static Load Test for Verification of Structural Robustness of Composite Oxidant Tank for Space Launch Vehicle (우주발사체용 복합재 산화제탱크 구조 강건성 검증을 위한 정하중 시험)

  • Kim, Hyun-gi;Kim, Sungchan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.98-105
    • /
    • 2021
  • This study presented the results of the static load tests conducted to verify the structural robustness of the composite oxidant tank for a space launch vehicle. First, we introduced the test equipment used in the static load test of the composite oxidant tank, and then described the test requirements that the composite oxidant tank must satisfy. In addition, we presented a test set-up diagram consisting of the static load test fixture, hydraulic pressure, control equipment, and data acquisition equipment, and the load profile of the static load test of the composite oxidant tank consisting of shear, equivalent compression, bending, and combination tests. As a result of load control, we verified the reliability of this test by showing the errors between the input load and the feedback load in each channel according to the increase of the test load, and the feedback error between the channel A and channel B of load cell in each load actuator. As a result of the static load test, the load of the actuator was properly controlled within the allowable error range in each test, and we found that the test specimen did not cause damage or buckling that causes significant structural defects in the required load.

On Design of the Decentralised Controller for a System with a Linear Symmetric Structure (선형 대칭 구성 시스템에 대한 분산 제어기 설계)

  • Lee, Se-In;Lee, Sang-Chuel;Cho, Do-Hyeon;Lee, Jong-Yong;Park, Jong-Woo;Lee, Sang-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.636-638
    • /
    • 1999
  • 본 논문에서는 선형 대규모 시스템(large-scale systems)에 대하여 강건한 분산 제어기를 설계한다. 동일한 부시템(identical subsystems)들이 서로 대칭적으로 연결되어 있는 제어기 설계 시 불확실성은 부시스템 행렬과 연결 시스템 행렬의 유계된 매개 변수 변동을 모두 고려한다. 본 논문의 설계 절차는 대칭 연결 구조를 불확실성으로 포함시킨 하나의 인공적인 보조 시스템(artificial auxiliary systems)으로 번환 함으로써 대규모 시스템에 대한 분산 제어기 설계의 복잡성을 줄일 수 있음을 보이고 수치 예를 통해 이를 확인한다.

  • PDF

Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control (인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • There are three kinds of algorithms(2-ARE, mu-synthesis, LMI) for controller design using closed-loop shaping method. This paper provides the summary of background theory of three algorithms and $H_{\infty}$ controller design results for spacecraft attitude control using the three controller design tools of Matlab$^{TM}$ Toolbox for comparison. As a result, it reveals that LMI design method is more reliable as well as easier than others for spacecraft attitude control design. Comparison results are as follow: 2-ARE method and LMI method provide almost same results in robust stability, robust performance and control authority level. But 2-ARE method is more sensitive than LMI method with respect to proper design of weighting functions: 2-ARE method is more difficult than LMI method in weighting function design. The design result of mu-synthesis method shows worse performance and requires bigger control authority than others.

Design and Computer Control of a Sliding Mode Fuel-Injection Controller for MPI Gasoline Engines (MPI 가솔린 엔진용 슬라이딩 모드 연료분사 제어기 설계 및 컴퓨터 제어)

  • 김종식;고용서;강건용;황이철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1030-1043
    • /
    • 1991
  • 본 연구에서는 모델링오차나 외란 등의 불확실성에도 강인한 슬라이딩 모드 제어방법을 이용하여 새로운 연료분사 제어기를 설계하였다. 그리고 8253 타이머와 A/D 변환기, 인터페이스회로 등으로 MPI가솔린 엔진용 전자 제어장치를 실제 엔진에 적용시킴으로써 새로이 설계된 연료분사 제어시스템의 성능을 파악하였다.엔진의 운전상태를 여러가지 제어 모드로 분류할 수 있으나 엔진회전수가 2000rpm, 부하가 20N의 일정한 부하 조건에서 엔진회전수를 1500rpm에서 2000rpm으로 변화시켰을 때의 과도상태 응답을 파악하였다. 이와 같이 새로운 슬라이딩 모드 연료분사 제어시스템 을 개발하여 3원촉매 변환기의 변환효율을 극대화함으로써 배기가스의 유해물질을 최 소화하는 것을 본 연구의 목적으로 하였다.

Look-Angle-Control Homing Loop Design with a Strapdown Seeker and Single Gyroscope (스트랩다운탐색기와 1축 각속도계를 이용한 관측각제어 호밍루프설계)

  • Hong, Ju-Hyeon;Park, Kuk-Kwon;Park, Sang-Sup;Ryoo, Chang-Kyung;Cho, Han-Jin;Cho, Young-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.324-332
    • /
    • 2016
  • In this paper, the terminal homing loop with a IIR-type strapdown seeker and a roll rate gyroscope is proposed. Basically, the proposed homing loop is based on the look-angle-control guidance. Since the range of the seeker is strictly limited, the missile is delivered to a point to lock the target on the seeker via non-guided flight during the midcourse guidance. The non-standard firing table is developed to compensate the wind and the target movement. To secure the delay margin is very important to prevent the instability of the homing loop when the time delay of the seeker is included. To validate the proposed homing loop, the 6-DOF nonlinear simulation is performed, and the Monte-Carlo simulation is also done for checking the robustness for the various kinds of uncertainty.

Control of Hot Spots in Plug Flow Reactors Using Constant-temperature Coolant (등온 냉각액을 활용한 plug flow reactor 내의 과열점 제어를 위한 제어모델 개발)

  • Rhyu, Jinwook;Kim, Yeonsoo;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • To control hot spot in a plug flow reactor (PFR) is important for the yield and purity of products and safety. In this paper, coolant temperature is set as a state variable, and radial distributions of heat and mass are considered to model the PFR more realistic than without considering radial distributions. The model consists of three state variables, reactant concentration, reactant temperature, and the coolant temperature. The flow rate of the isothermal coolant is a manipulated variable. This paper shows that the controller considering the radial distributions of heat and mass is more effective than the controller without them. Assuming that u3,0 is 0.7, the suggested control equation was robust when St is bigger than 1.3, and Ac/A is smaller than 2.0. Under this condition, the hot spot temperature changed within the relative error of one percent when the temperature of input altered within the range of five percent.