• Title/Summary/Keyword: 제로에너지주택

Search Result 34, Processing Time 0.021 seconds

The Study on the Zero-Energy House Prototype of Country House (농촌주택에 적합한 제로에너지 하우스의 프로토타입 연구)

  • Im, Kyung-Up;Kim, Bich-Na;Lee, Chul-Sung;Yoon, Jong-Ho;Jin, Kyeong-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.185-190
    • /
    • 2009
  • Due to the building energy consumption of total energy consumption of Korea takes over 24%, economizing building energy and using renewable energy resources is being required. To suggest the prototype of zero energy house of country house, the passive systems and active systems are applicated and simulated. In case of wall insulation system is applicated, the heating load of building is reduced. Also, clear triple pair glazing system reduced 2.1% of heating load of building. The amount of reducing heating load by infiltration is depending on the Heating system. In this model, the 0.3ACH made 14.6% saving on heating load from base infiltration 0.82ACH. The solar thermal system of active system could save 80% of DHW and PV system supplies electric power more than average consumption of year. Through the optimum process, the end use of zero energy house of country house is 36kWh/m2.yr and total energy consumption is reduced about 74.2%.

  • PDF

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

Energy Saving by Combination of Element Technologies of Zero-Energy House (제로에너지 주택용 요소기술 조합에 따른 에너지절감에 관한 연구)

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.77-84
    • /
    • 2015
  • Purpose: In 2008, As the green growth policy was presented, Green Building is made any effort to propagation. In this paper, the respective technologies that are able to considerably reduce the energy demands for heating, cooling, hot-water, lighting and ventilation among the variety of technologies were selected. Method: Design factors such as (1) External insulation, (2) Triple glazing window, (3) LED lighting, (4) External venetian blind, (5) Geothermal and (6) Heat recovery ventilator were derived. In addition, energy saving effects in terms of energy demand, energy consumption and energy cost were investigated using EnergyPlus, building energy analysis tool. Result : The results were as follows. (1) It can be seen that high insulated triple glazing window, heat recovery ventilator and external insulation technology is excellent for energy demand. (2) Unlike energy demand, saving effect of energy consumption and energy cost was shown in order of Geothermal > Triple Window > Heat recovery Ventilation> Insulation> LED Lighting > EVB Blind.

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

A Study on the STEAM Program Development of Zero Energy House Design for Middle School Students (중학생을 위한 제로에너지 주택디자인 STEAM 교육프로그램 개발 연구)

  • Lee, Yun-Hee;Lee, Myung-A;Han, Hae-Ryon;Lee, Jae-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.24-32
    • /
    • 2017
  • STEAM education is an effective teaching method to develop self-problem-solving skills through creative thinking. In order to revitalize STEAM education, various program models are being developed recently. The purpose of this study is to develop a STEAM education program based on the project-based learing method that includes the process of solving global environmental problems. The STEAM element was extracted by linking the zero energy house design with the middle school curriculum, and the STEAM education program was developed considering career activities. It was analyzed whether the developed program can improve STEAM core competence and job preparation ability. The education program was conducted for middle school students and the program was evaluated through questionnaires. In order to strengthen the STEAM competency, project-based learning method was applied and it was able to enhance the active problem solving ability of learners. In addition, opportunities for career experience could be provided through career exploration programs and various activities. Through this STEAM education program, it is expected to contribute to cultivating human resources with convergence knowledge and core competency.

Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction (고기밀 고단열 주택의 기밀성능에 관한 실험적 연구)

  • Shin, U-Cheul;Yoon, Jong-Ho;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

Analysis of Potential to Achieve Carbon Neutrality through Technical Definition and Case Study of Carbon-Neutral Buildings (탄소중립 건물의 기술적 정의와 사례 분석을 통한 탄소중립 달성 잠재성 분석)

  • Min Hee Chung
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2024
  • This study analyzes the potential to achieve carbon neutrality through the technical definition and case studies of carbon-neutral buildings. In line with the Paris Agreement of December 2015, the global community has committed to limiting the average temperature rise to below 2oC and striving to restrict it to 1.5oC above pre-industrial levels. Achieving this requires reaching a net-zero state by 2050 and necessitates transitions across various sectors including energy, land use, and transportation. This research explores the technological approaches and real-world examples of carbon-neutral buildings, assessing their feasibility and limitations. By examining the definition of carbon-neutral buildings and presenting various technological solutions and case studies from both domestic and international contexts, this study evaluates the effectiveness and practicality of carbon-neutral buildings. The findings offer specific guidelines for the design, construction, and operation of carbon-neutral buildings and provide practical information for policymakers and practitioners aiming to create sustainable built environments.

A Study on Heating Load Analysis of Zero Energy Solar House Considering the Effective Transmittance of Window (창호의 유효투과율을 고려한 제로에너지 태양열 주택의 난방부하 분석에 관한 연구)

  • Son, Sun-Woo;Baek, Sang-Hun;Lee, Hyun-Soo;Baek, Nam-Choon;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.62-69
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2001, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48%, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

A Fundamental Study On the Self-Sufficient Heating Energy for Residential Building (주거용 건물의 난방 에너지 자립을 위한 기초 연구)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.255-258
    • /
    • 2009
  • Leading developed countries have studied energy self-sufficient houses such as zero or low energy buildings to reduce energy consumption for buildings since the early 1990s. Moreover, some developed countries have actually constructed self-sufficient houses and operated them for demonstration, expanding use of such houses. Korea has also established Zero Energy Solar House(ZeSH) and studied energy independence. Therefore, this study analyzed research result regarding ZeSH, self-sufficient energy house hold of Korea, found out technologies used for heating energy independence, used building interpretation program(ESP_r) to evaluate performance of each factors and analyzed energy reduction quantitatively. Results from the research are as follows: Reduction rate of actual detached house's heating load was also analyzed quantitatively depending on application of each technology. When each factor was applied step-by-step, annual reduction rate of heating load depending on increase in insulation thickness reached 6.6~22.2 %. Annual reduction rate of heating load depending on increase insulation thickness, and change in window heating performance and area ratio reached 31.5 %. Annual reduction rate of heating load through high-sealing and high-insulation depending on change in leakage rate reached 40.0~88.9 %. Annual reduction of heating load, when Mass Wall and attached sun space was applied were applied reached 28.5~39.2 %, respectively.

  • PDF