• Title/Summary/Keyword: 제로변위법

Search Result 8, Processing Time 0.023 seconds

Initial Shape Analysis of Suspension Bridge System under Dead Load (고정하중을 받는 현수교 시스템의 초기형상 결정법)

  • Kim, Min;Kim, Moon-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a simplified analysis method of determining the initial shape of suspension bridges, including the horizontal tension force of the main cable and the locations of each hanging point, considering the force equilibrium condition of each hanging point. This method is effective because it requires less effort than the methods used in other studies, for which complicated non-linear analysis was used, to comparatively determine the exact initial shape. The accuracy and validity of the present method are demonstrated by comparing the results of this study with those of previous researchers' numerical examples, including 2D and 3D models.

A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method (광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Kwang-Jai;Yoo, Jai-Suk;Park, Young-Moo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Estimation of the Moving Load Velocity Using Micro Genetic Algorithm (마이크로 유전 알고리즘을 이용한 교통하중의 속도추정)

  • Tak, Moon-Ho;Noh, Myung-Hyun;Park, Tae-Hyo;Park, In-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.292-295
    • /
    • 2009
  • 본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.

  • PDF

An Improved Initial Force Method for Determining the Initial Configuration of Suspension Bridges (현수교 시스템의 초기형상 결정을 위한 개선된 초기부재력법)

  • Kim, Min;Kim, Ho-Kyung;Kim, Moon-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.237-247
    • /
    • 2011
  • This paper presents an improved initial force method for determining the initial shape of suspension bridges. After determining the initial shape factors through the force equilibrium conditions of each hanging point, the initial force method was applied with the computed values, each node's coordinates, and unstrained lengths of the cable element as inputs. The unstrained length of each cable element was regarded as a fixed value in each iteration step, unlike in the typical initial force method. This method can be applied to 2D and 3D suspension bridge models. The validity of the present method was demonstrated by comparing the results of the numerical examples.

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element (고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석)

  • Han In-Seon;Kim Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2005
  • In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.

Measurement of Thermal Diffusivity Using Deformation Angle Based on the Photothermal Displacement Method (광열변위법의 변형각을 이용한 열확산계수 측정)

  • Jeon, Pil-Su;Lee, Gwang-Jae;Yu, Jae-Seok;Park, Yeong-Mu;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.302-309
    • /
    • 2002
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. In previous works, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, however, we proposed the new analysis method based on the real part of deformation angle as the relative position between two beams. From the zero-crossing position of real part of deformation angle with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.