• Title/Summary/Keyword: 제련로

Search Result 262, Processing Time 0.02 seconds

The Selective Removal of Sb and Pb from Molten Bi-Pb-Sb Alloy by Oxidation (용융(熔融) Bi-Pb-Sb계(系) 합급(合金)의 산화(酸化)에 의한 Sb과 Pb 제거(除去))

  • Kim, Se-Jong;Son, In-Joon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, behaviors of removing Sb and Pb by oxidation of molten Bi-Pb-Sb alloy which is a by-product of non-ferrous smelting process was investigated. The molten alloy was oxidized at 1173 K by bubbling $N_2+O_2$ gas through a submerged nozzle. The Sb was removed and recovered as mixed phase of $Sb_2O_3$ and metal Sb. In the case of bubbling $N_2+O_2$ gas into molten Bi-Pb alloy at 923 K, Pb was oxidized and removed to slag. But Bi could not be refined due to simultaneous oxidization of Bi with Pb.

Recovery of High Purity Sn by Multi-step Reduction of Sn-Containing Industrial Wastes (건식 환원 공정을 이용한 고순도 주석 회수)

  • Lee, Sang-Ro;Lee, Man-Seung;Kim, Hyun You
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In order to develop a technology for the recovery of pure tin from the Sn containing industrial wastes (SIWs), a process consisted of high temperature reduction and electrorefining was investigated. The tin which exists as oxide in SIWs was successfully reduced by two consecutive high temperature treatments and 92.7% of the tin was recovered. The purity of the tin thus obtained was increased to 99.87% by electrorefining. By applying the results obtained in this work, a commercial process can be developed to produce pure tin metals from domestic spent resources, which can reduce the amount of tin imported from abroad.

Preparation of Purified Lead Nitrate from Lead Sulfate Generated from the Lead-acid Battery Smelter as By-products (재생연 제련 부산물인 황산연으로부터 정제 질산연의 제조)

  • Lee, Jin-Young;Han, Choon;Shin, Joong-Kuk;Kim, Saung-Gyu;Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.31-38
    • /
    • 1998
  • Hydrometallugical process was developed to produce the purified lead nitrate from lead dust mainly composed of lead s sulfate generated from lead-acid battery smelter as by-product. This process consisLed of carbonation process with carbonate s salts, leaching and purification processes. FmaJJy crude lead nitrate purified to produce high-purity product with over 99% Pb $(NO_3)_2$.

  • PDF

Overview on the Technologies for Extraction of Rare Earth Metals (희토류금속(稀土類金屬) 제련기술(製鍊技術) 개요)

  • Park, Hyung-Kyu;Lee, Jin-Young;Cho, Sung-Wook;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.74-83
    • /
    • 2012
  • Rare earth metals have been made from rare earth compounds which were prepared from rare earth ore concentrates through successive processes such as leaching(i.e. extraction of rare earth elements to liquid media), separation, purification, precipitation. Here, process for treating monazite and bastnasite ore concentrates were briefly reviewed, and metallothermic reduction and fused salt electrolysis methods were introduced as the extraction technologies for rare earth metals.

Smelting and Refining of Silicon (실리콘의 제련과 정제)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.

Economic Assessment of Manganese Nodules Mining (심해저 망간단괴 사업의 경제성 평가)

  • Hwang, Seog-Won;Hwang, Jung-Tae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.260-270
    • /
    • 2008
  • The economics of manganese nodules mining was assessed based on 36 scenarios which reflect recent changes of the metal market. Those scenarios included optimistic/neutral/pessimistic prospect for the cost, 2 production scales(1.5 MT and 3 MT) and 6 assumptional paths of future metal prices. A large part of scenarios, in which optimistic or neutral prospect for the cost and metal prices were assumed, showed good economic feasibility of the project. For example, 37.12% of Internal Rate of Return(IRR) was obtained in the scenario of 3 MT production, neutral cost prospect and present metal price maintained in the future.

A Study of the Microstructure and Impurity Characteristics of Cast Bronze in Koryo Period (고려시대의 청동 주물에서 관찰되는 불순물(Cu2S) 특성 연구)

  • Choi, Jung Eun
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.313-320
    • /
    • 2016
  • The aim of this study was to obtain information on the ancient material of cast bronze through an investigation of the microstructure and impurity characteristics of the casting. Three Koryo bronze coins were analyzed using an optical microscope, scanning electron microscope, and electron dispersive X-ray analyses were used to determine the composition of the specimens. The three coins had 4 phases: ${\alpha}phase$, ${\delta}phase$, Pb, and impurities ($Cu_2S$). $Cu_2S$ was found to exist near Pb or in ${\delta}phase$. $Cu_2S$ is the inter mediate product of copper ore refining. Therefore, the copper ore was not completely refined. To find out the characteristic of $Cu_2S$, we melt 1)Koryo bronze coin and 2)$Cu_2S$ and Pb powder at 1273 K. The reaction between $Cu_2S$ and Pb at 1273 K yielded fine Cu and black gas, which was identified to be PbS and is presented below: $Cu_2S+Pb{\rightarrow}PbS{\uparrow}+2Cu$.

A Study of Copper Production Techniques at the Archaeological Site in Gwanbukri, Buyeo in the 6th and 7th Centuries (6~7C 부여 관북리 유적의 동 생산기법 연구)

  • Lee, Ga Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Research was conducted to characterize the copper production and smelting process with 11 copper smelting by-products (copper slag and copper crucible) excavated from the NA and LA areas at the Gwanbuk-ri archeological site in Buyeo. Scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and Raman microspectroscopy were employed in the analysis. The research results reveal that the copper slag from Gwanbuk-ri contained silicate oxide, magnetite, fayalite, and delafossite, which are typical characteristics of crucible slag and refined slag. The outward appearance and microstructure of the slag were grouped as follows: 1. glassy matrix + Cu prill, 2. glassy matrix + Cu prill + magnetite, 3. silicate mineral matrix + Cu prill, 4. crystalline (delafossite and magnetite) + amorphous (Cu prill), 5. magnetite + fayalite, and 6. slag from slag. The copper slags from Guanbuk-ri were found to contain residues of impurities such as SiO2, Al2O3, CaO, SO4, P2O5, Ag2O, and Sb2O3 in their microstructure, and, in some cases, it was confirmed that copper, tin and lead are alloys. These results indicate that refining of intermediate copper(including impurities) and refining of alloys of copper(including impurities) - tin and refining of copper(including impurities) - tin - lead took place during the copper production process at Gwanbuk-ri, Buyeo.

A Study of the Iron Production Process through the Analysis of Slags Excavated from Bupyeong-ri, Inje, Korea (인제 부평리유적 출토 슬래그 분석을 통한 제철 과정 연구)

  • Bae, Chae Rin;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.143-151
    • /
    • 2020
  • In the present article, we have analyzed five slags excavated from the Unified Silla period iron smelting site, i.e., location 4-2 of the Inje Bupyeong-ri site, to investigate the iron smelting process. The total Fe content of the slag excavated from the Inje Bupyeong-ri site ranged between 3.65 and 23.78 wt%, lower than that of typical slag, and deoxidation agent of the slag ranged between 65.92 and 88.96 wt%, higher than that of typical slag. These results suggest that the recovery rate of iron was significantly high. Furthermore, cristobalite was detected in most of the samples, and the furnace temperature, estimated by substituting the analyzed data into the FAS and FCS state diagrams, was confirmed as 1,600℃ or more. These results suggest that the operation at the Inje Bupyeong-ri site was performed at a temperature capable of producing cast iron by completely melting the carbon-containing iron. Observation of the microstructure showed that the iron fragments excavated at the Inje Bupyeong-ri site were identified as white cast iron. Steadite from the ternary iron-carbon-phosphorus system was observed in the white cast iron structure. These results show that indirect smelting was performed when the iron smelting by-products were produced. Based on the analysis results, it was confirmed that the Inje Bupyeong-ri site was the indirect smelting site in the Unified Silla period.

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.