• Title/Summary/Keyword: 정확한 Riemann 해법

Search Result 23, Processing Time 0.03 seconds

A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver (HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Numerical Simulation for Shallow-water Flow with Wetting and Drying over Paraboloidal Topography (천수 흐름에 의한 포물면 지형의 잠김과 드러남에 대한 수치모의)

  • Hwang, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.322-322
    • /
    • 2017
  • 천수 흐름에 대한 수치해석에서 매우 작은 수심의 발생은 해가 불안정해지는 주요 원인 중 하나이며, 경사면이 잠기고 드러나는 그 전선에서 그 현상은 더욱 두드러질 수 있다. 특히, 지배 방정식이 보존형으로 기술되는 경우, 흐름률이나 생성항의 계산에서 수심에 의한 나눗셈이 불가피하므로 보존변수를 정확하게 계산하는 것이 해의 안정성을 도모하기 위한 관건이 된다. 이러한 기대에 부응할 수 있는 수치해법으로 흐름률을 정확한 계산할 수 있는 Riemann 해법을 들 수 있다. 또한, 생성항을 정확하게 계산할 수 있도록 계산 격자를 적절하게 구성하고 그 격자가 완전히 잠기지 않을 경우에 대해 물리적으로 타당하게 처리할 필요가 있다. 이 연구에서는 흐름률의 계산에 근사 Riemann 해법을 적용하여 포물면 지형을 지나는 천수 흐름에 대해 모의하였다. 1981년에 W. C. Thacker는 회전 포물면 위의 천수 문제에 대해 천수방정식의 정확해를 처음으로 유도하였다. 이 문제는 지형의 잠김과 드러남이 다수의 계산 격자에서 지속적으로 이루어지기 때문에 천수흐름의 수치 모의에서 극도로 혹독한 조건의 시험으로 알려져 있다. 회전 포물면 위의 천수 문제에 대해 근사 Riemann 해법에 따른 자료의 재구축 방법, 잠김과 드러남의 처리 등에 대해 검토하였다.

  • PDF

Development of One Dimensional Finite Volume Model Using Riemann Approximate Solver (Riemann 해법을 이용한 1차원 유한체적모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.428-432
    • /
    • 2007
  • 댐 제방 등의 붕괴로 인하여 발생하는 급격한 유량의 변화와 흐름영역의 변화로 인한 천이류 및 도수의 발생, 불규칙한 하천단면에서 갈수기 저수기의 흐름해석은 기존의 수치해법의 한계로 인하여 수리모형실험 및 경험식 또는 단면의 단순화 등에 의존하고 있는 실정이다. 본 연구에서는 자연하천에서 비선형 흐름율 계산에 불연속초기조건의 해석해인 Riemann 근사해법을 사용하여 수치적으로 안정되고 정확한 1차원 모형을 개발하고자 한다. 이를 위하여 유한체적법을 사용하였고, 수위와 유량의 계산을 위하여 요구되는 유한체적을 유출입하는 흐름율의 계산에 HLL Riemann 해법을 사용하였으며, MUSCL 기법으로 2차 정확도기법으로 확장하였다. Riemann 해법을 통하여 계산된 비선형의 흐름율과 보존 특성을 만족시켜줄 수 있는 하상 및 하폭변화로 인한 생성항을 처리하는 기법을 제안함으로서 새로운 1차원 수치해석모형을 개발하였다. 개발된 모형의 실제하천의 적용성을 확인하기 위하여 하상과 하폭이 변화하는 부정류 흐름에 적용하여 모형의 적용성 및 정확성을 검증하였다.

  • PDF

Comparative Study of Hydraulic Analysis Models Using Riemann Approximate Solver (Riemann 근사해법을 이용한 수리해석모형의 비교 연구)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1332-1336
    • /
    • 2007
  • 댐 제방 붕괴파는 갑작스러운 유량의 증가가 발생하여 불연속적인 흐름특성을 가지는 충격파(shock wave)가 전파되며, 갈수기 저수기에는 중소하천의 상류, 여울과 소에서의 흐름 또는 낙차공이나 보, 댐 여수로 등의 수공구조물에서 부분적인 사류 흐름이 발생된다. 이 때 흐름은 한계수위를 통과하게 되므로 기존 수치해법의 적용에 어려움이 존재한다. 본 연구에서는 실제하천에 적용될 수 있는 1차원 HLL, Roe Riemann 근사해법들을 간단히 소개하고, 시간공간적으로 2차의 고정확도 기법으로 확장하는 방법에 대하여 소개하였다. 각 기법을 정확해가 존재하는 댐붕괴 및 마른하도 전파의 경우에 적용하여 각 기법의 적용성 및 정확성을 비교하였다. 그리고 기존 Lax-Friedrichs 기법과 Lax-Wendroff 기법의 적용결과를 비교하였다. 적용결과 Lax-Friedrichs 기법을 제외한 모든 기법이 정확해와 잘 일치하였으며 특히 HLL 기법을 2차 정확도로 확장한 WAF 기법이 가장 높은 정확도로 계산되었다. 그러나 비선형 생성항이 존재하는 실제하천에 있어서 MUSCL 기법을 이용한 2차 정확도 기법이 합리적일 것으로 판단된다.

  • PDF

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Review on the divergence form for bed slope source term and correction of the volume/free-surface relationship (발산형 바닥 경사 생성항의 재검토와 체적-수위 관계의 수정)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.289-302
    • /
    • 2017
  • DFB (Divergence Form for Bed slope source term) was rigorously derived and the error of mDFB using mean water depth at the cell face in DFB was clearly demonstrated. In addition, DFB technique turned out to be an exact method to the bed slope source term. The existing volume/free-surface relationship to the PSC (Partially Submerged Cell) has been corrected. It was discussed that treatment for the partially submerged edge is required to satisfy the C-property in PSC. It is expected that this study will provides a more accurate means in analyzing the shallow water equations with the approximate Riemann solver.

An Inundation Analysis Model for Smart Staff Gauge (스마트 목자판을 위한 침수 해석 모형)

  • Hwang, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.255-255
    • /
    • 2021
  • 내수 침수는 강물과 같은 외수보다는 제내지에서 하수 또는 우수의 배제가 불량하여 발생되는 범람이다. 내수 침수 상황에서 침수심의 정확한 관측과 예보된 강수로부터 침수심을 예측할 수 있는 시스템 즉, 스마트 목자판이 개발되고 있다. 시스템 운용에 사용될 소프트웨어 가운데 하나로서 침수 해석을 위한 수치 모형이 필요하다. 내수에 의한 침수와 그것의 배제를 무리 없이 모의하려면, 물이 차고 빠지는 물리 현상을 타당하게 해석하는 것이 관건일 것이다. 그에 따라 2차원 천수 방정식을 유한 체적법으로 해석할 때 흐름률(flux) 계산에 근사 Riemann 해법을 적용하는 모형을 도입하였다. 단순하면서도 내수 침수의 재현에서 드러날 수 있는 취약점들을 포괄할 수 있도록 경사면과 계단으로 가상 지형을 구성하였으며, 강수로 인한 지형의 침수에 대해 개발된 모형을 시험하였다. 근사 Riemann 해법은 흐름률의 정확한 평가로 잠김과 드러남 모의가 자연스런 장점이 있으나, 해석 방법이 복잡하여 계산 시간이 비교적 오래 걸리므로 그에 대한 대책이 요구된다.

  • PDF

2D Numerical Simulations for Shallow-water Flows over a Side Weir (측면 위어를 넘나드는 천수 흐름에 대한 2차원 수치모의)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.957-967
    • /
    • 2015
  • It was reviewed for the 2D numerical simulations to evaluate the effects of flood control by detention basin, even if stage-discharge relationships for the side weir were not known. A 2D depth-integrated numerical model was constructed by the application of the finite volume method to the shallow water equations as a numerical method and the introduction of an approximate Riemann solver for the accurate calculation of fluxes. Results by the model were compared with those by the laboratory test for the cases of free overflow and submerged flow over a side weir between the channel and storage. The difference between simulated and measured discharge coefficients for the case of free overflow is very small. In addition, the results by simulations were in good agreement with those by experiments for the submerged flow over a side weir and its mechanism was reproduced well. Through this study the discharge coefficients of side weirs can be accurately determined by the 2D numerical model and a considerable degree of accuracy can be achieved to evaluate the effect of flood defenses by detention basins. Thus, it will be expected to apply this model practically to the plan of detention basins, the evaluation of design alternatives, or the management of the existing ones.

A Flood Modeling Using 2D FV Model with Hybrid Grid (하이브리드 격자를 적용한 2차원 홍수 모델링)

  • Kim, Byung Hyun;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.43-43
    • /
    • 2015
  • 천수방정식을 사용하는 초기 수치모형은 프로드수($F_4$)가 변화하는 흐름 즉, 상류방향과 하류방향으로 전파하는 홍수파를 동시에 해석하기 위해 중앙 차분기법이 필요한 상류(sub-critical flow)와 흐름방향에 따른 상류이송(upwinding)기법이 필요한 사류(super-critical flow)가 나타나는 흐름해석에서 어려움이 있었다. 하지만, 근사 Riemann 해법의 등장으로 흐름방향에 관계없이 특성선을 따라 정확한 상향가중기법의 적용이 가능하게 되어, 천수방정식을 지배방정식으로 하는 수치모형이 더욱 실용적으로 적용될 수 있도록 하였다. 따라서, 현재 근사 Riemann 해법은 Godunov 형 유한체적 기법, 불연속 Galerkin 혹은 Petrov-Galerkin 유한요소기법 그리고 Boussinesq 기법에도 적용되고 있으며, 특히 Godunov 형 유한체적기법과 결합한 근사 Riemann 해법은 댐 붕괴, 하천 범람 그리고 도시 및 해안지역 침수에 이르기까지 여러 가지 문제에 폭넓게 적용되고 있다. 지금까지 홍수 모델링에 적용된 Godunov형 유한체적모형은 정형 사각격자나 비정형 삼각격자 중에서 한가지의 격자 종류만을 적용한 연구가 주로 수행되었으며, 유한요소모형과 같이 이 두 가지 격자를 동시에 적용한 연구는 거의 이루어지지 않고 있다. 일반적으로, 삼각격자는 사각격자와 는 달리 연구유역의 경계나 지형이 복잡한 경우에도 큰 노력없이 격자의 생성이 가능하나, 격자와 노드의 수가 사각격자보다 많아 계산시간이 많이 소요되는 단점이 있다. 반면, 사각격자는 하천과 같이 선형으로 변하는 지형에 대해서는 표현하기가 용이하며 계산시간의 효율성도 뛰어나다. 본 연구에서는 하천, 도시 그리고 해안지역에서의 효율적이고 정확한 홍수 모델링을 위해 삼각 및 사각격자 그리고 이 두 격자를 동시에 고려한 하이브리드 격자의 적용이 가능한 Godunov형 2차원 유한체적 모형을 개발하였다. 그리고 개발모형을 정확해가 있는 댐 붕괴 문제, 실측치가 존재하는 실험하도 및 실제하도에 삼각, 사각 그리고 혼합격자를 생성하여 모의를 수행하고, 각 적용 격자에 따른 정확성과 효율성 및 장점과 단점을 연구하였다.

  • PDF

An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations (천수방정식에 대한 HLLL 근사 Riemann 해법의 적용)

  • Hwang, Seung-Yong;Lee, Sam Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.21-27
    • /
    • 2012
  • The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.